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Abstract 
 

Iron is an essential component for metabolic processes 
including oxygen transport within hemoglobin, 
tricarboxylic acid (TCA) cycle activity and 
mitochondrial energy transformation. Iron deficiency 
can thus lead to metabolic dysfunction and eventually 
result in iron deficiency anemia (IDA) which affects 
approximately 1.5 billion people worldwide. Using a 
rat model of IDA induced by phlebotomy, we studied 
the effects of IDA on mitochondrial respiration in 
peripheral blood mononuclear cells (PBMCs) and liver. 
Furthermore, we evaluated whether mitochondrial 
function evaluated by high-resolution respirometry in 
PBMCs reflects corresponding alterations in the liver. 
Surprisingly, mitochondrial respiratory capacity was 
increased in PBMCs from rats with IDA compared to 
controls. In contrast, mitochondrial respiration 
remained unaffected in livers from IDA rats. Of note, 
citrate synthase activity indicated an increased 
mitochondrial density in PBMCs, whereas it remained 
unchanged in the liver, partly explaining the different 
responses of mitochondrial respiration in PBMCs and 
liver. Taken together, these results indicate that 
mitochondrial function determined in PBMCs cannot 
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serve as a valid surrogate for respiration in the liver. 
Metabolic adaptions to iron deficiency resulted in 
different metabolic reprogramming in the blood cells 
and liver tissue. 

 

1. Introduction 
 

Anemia is a global burden affecting more than 1.5 billion people worldwide [1-3]. 
The most prevalent form of anemia is iron deficiency anemia (IDA), mostly occurring in 
preschool children and women in reproductive age [1,2]. The main symptoms include 
fatigue, weakness, and pale skin along with reduced cardio-vascular performance. 
Moreover, IDA may negatively affect growth and cognitive development of children 
[1,4,5]. IDA is characterized by absolute iron deficiency caused by chronic blood loss, 
insufficient dietary intake, or a combination of both [1,5].  
 

 Iron is an essential trace element for life, as it is necessary for hemoglobin 
biosynthesis and for key metabolic enzymes involved in DNA replication, hormone 
synthesis and mitochondrial bioenergetics [6,7]. Especially in mitochondria, iron is 
needed for heme synthesis, iron sulfur (Fe-S) cluster formation and oxidative 
phosphorylation [8-13]. In the electron transfer system (ETS) complexes CI, CII and CIII 
possess Fe-S clusters which are crucial for the synthesis of adenosine triphosphate (ATP).  
Iron metabolism is tightly regulated by the liver-derived peptide hormone hepcidin, 
which mediates degradation of ferroportin, the only cellular iron exporter known so far, 
thereby controlling iron absorption and iron recycling from macrophages [14]. 
Expression of hepcidin is controlled by multiple factors. Both iron deficiency and anemia 
reduce hepdicin expression, therefore increasing circulating iron levels and delivery to 
erythroid progenitor cells [3,14]. 
 

It has been shown previously that systemic iron deficiency and IDA reduce 
mitochondrial respiratory capacity in cardiomyocytes and skeletal muscle via reduction 
of iron-rich mitochondrial electron transfer components and morphologic changes of 
mitochondria such as reduced cristae structure [15-19]. In addition, mitochondria in 
hepatocytes of iron deficient rats exhibit ultrastructural abnormalities including an 
enlarged and rounded shape, therefore occupying an increased proportion of the 
cytoplasm due to their larger size but not due to an increased number of mitochondria 
[20,21]. 
 

Despite of possible implications of these morphologic alterations on mitochondrial 
function, the impact of IDA on mitochondrial respiration in circulating peripheral blood 
mononuclear cells (PBMCs) and liver has not been analyzed thus far. We studied these 
two systems since determination of mitochondrial function in PBMCs might represent an 
easily accessible surrogate reflecting mitochondrial functionality in the organs such as the 
liver. Changes in mitochondrial respiration of PBMCs have been observed in various 
diseases including fatty liver disease, depression, or sepsis, and even in restless legs 
syndrome where impaired mitochondrial function was linked to indication of 
mitochondrial iron deficiency [22-25]. Therefore, analysis of PBMCs could be an efficient 
and minimal invasive procedure when relating information from blood samples to organ 
function or disease state instead of collecting biopsies from the particular organ itself.  
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The aim of this study was a comparative analysis of mitochondrial respiration in 
PBMCs and liver under steady-state control conditions and in the course of IDA. 

 
2. Results 
 

2.1. Effects of IDA on hematological and iron parameters 
 

IDA was induced by phlebotomy for five consecutive days as previously described 
[26]. As anticipated, hemoglobin concentration was significantly lower in rats with IDA 
compared to controls (Figure 1a). Moreover, the reticulocyte fraction was increased 
(Figure 1b). Plasma iron concentration did not differ significantly (Figure 1c). The 
lymphocyte fraction remained unaffected (Figure 1d), whereas an increased proportion 
of monocytes altered PBMC composition in rats with IDA (Figure 1e). Hepatic mRNA 
expression (Hamp) of the master regulator of iron metabolism, hepcidin, was decreased 
(Figure 1f). Along with that, liver iron content was lower in IDA animals compared to 
controls (Figure 1g). 
 

Figure 1. Alterations in blood and iron parameters caused by iron deficiency 
anemia (IDA).  
(a) Hemoglobin (Hb) concentration; (b) reticulocyte proportion;  
(c) plasma iron concentration;  
(d) lymphocyte fraction;  
(e) monocyte fraction;  
(f) liver Hamp mRNA expression relative to glucuronidase beta (Gusβ); and (g) liver iron 
content. Control N = 9 rats, IDA N = 10 rats. An unpaired two-tailed student’s t-test was 
applied for all normal distributed results; a Mann-Whitney-U test was applied for the non-
parametric result shown in (g). Values are shown as median ± interquartile range. p-
values are shown in the graphs. 
2.2. Mitochondrial respiration differs in PBMCs and livers in response to IDA 
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We then analyzed the effects of IDA on mitochondrial respiratory capacity in freshly 
isolated PBMCs and homogenate from fresh liver biopsies (for protocols see 
Supplemental Figures S1 and S2). Of note, we observed an increase of mitochondrial 
respiration in PBMCs of IDA compared to control rats (Figure 2a). This included LEAK 
respiration (Figure 2a, PML), OXPHOS capacity (Figure 2a, PMP) and electron transfer (ET) 
capacity (Figure 2a, PME; PGMSE and SE). In contrast, no major changes in liver 
mitochondrial respiratory capacity were observed when comparing IDA and control rats 
(Figure 2b). 
 

 

Figure 2. Effects of IDA on mitochondrial respiration in rat peripheral blood 
mononuclear cells (PBMCs) and liver. (a) Mitochondrial respiratory capacity in PBMCs 
with sequential titrations; states: ROUTINE: living cells, residual oxygen consumption 
(ROX): digitonin, PML: pyruvate + malate, PMP: ADP, PMcP: cytochrome c, PME: uncoupler 
carbonyl cyanide m-chloro phenyl hydrazine (CCCP), PGME: glutamate, PGMSE: succinate, 
OctPGMSE: octanoylcarnitine, SE: rotenone, SGpE: glycerophosphate, ROX: antimycin A. (b) 
Mitochondrial respiratory capacity in the liver; states: ROX: liver homogenate, PML: 
pyruvate + malate, PMP: ADP, PMcP: cytochrome c, PME: uncoupler CCCP, PGME: glutamate, 
PGMSE: succinate, OctPGMSE: octanoylcarnitine, SE: rotenone, SGpE: glycerophosphate, 
ROX: antimycin A. N = 8 rats per group. An unpaired two-tailed student’s t-test was applied 
for all normal distributed states; a Mann-Whitney-U test was applied for the non-
parametric states (a) PMP, PMcP, PGME, SE; (b) ROX, PMP, SGpE. Values are shown as median 
± interquartile range. p-Values are shown in the graphs. 
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Figure 3. Mitochondrial respiration in PBMCs and liver from control and IDA rats 
independent of mitochondrial density and citrate synthase (CS) activity. (a) FCR 
calculated from PBMC respiration with reference state PGMSE. States: ROUTINE: living 
cells, ROX: digitonin, PML: pyruvate + malate, PMP: ADP, PMcP: cytochrome c, PME: 
uncoupler CCCP, PGME: glutamate, PGMSE: succinate, OctPGMSE: octanoylcarnitine, SE: 
rotenone, SGpE: glycerophosphate, ROX: antimycin A. (c) FCR calculated from liver 
respiration with reference state SGpE. States: ROX: liver homogenate, PML: pyruvate + 
malate, PMP: ADP, PMcP: cytochrome c, PME: uncoupler CCCP, PGME: glutamate, PGMSE: 
succinate, OctPGMSE: octanoylcarnitine, SE: rotenone, SGpE: glycerophosphate, ROX: 
antimycin A. (b) and (d) CS activity in PBMCs and liver, respectively. Values of CS activity 
are shown as n-fold change of control. N = 8 rats per group. An unpaired two-tailed 
student’s t-test was applied for all normal distributed results; a Mann-Whitney-U test was 
applied for the non-parametric results (a) PMP, PMcP, PGME, SE; (b) PMP and (d). Values 
are shown as median ± interquartile range. p-Values are shown in the graphs. 
 

We next investigated whether tissue specific alterations of mitochondrial function 
could be based on changes in mitochondrial quality and density in response to IDA. 
Therefore, flux control ratios (FCR) were calculated in both, PBMCs and liver, whereby the 
values obtained from the measurements of mitochondrial respiration were normalized 
for a common reference state (PBMCs: PGMSE; liver: SGpE) showing mitochondrial 
respiration independent of mitochondrial density (Figure 3a and c) [13,27,28]. In PBMCs, 
increased mitochondrial respiration was still observed after correction for mitochondrial 
density in OXPHOS (Figure 3a, state PMP) and ET (Figure 3a, state PME and SE). 
Furthermore, citrate synthase (CS) activity, a marker for mitochondrial density, was 
measured [29-31]. In PBMCs, CS activity was significantly increased (Figure 3b). 
Consequently, the observed changes in mitochondrial respiration in PBMCs originated 
from alterations in mitochondrial quality and mitochondrial density. In the liver, we found 
a slight increase in OXPHOS capacity whereas all other measurements of mitochondrial 
function remained unaffected when comparing control to IDA animals (Figure 3c, state 
PMP). CS activity in the liver did not show any differences (Figure 3d), indicating that 
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mitochondrial density remained unaltered when comparing IDA with control rats, and 
supporting the conclusion of unchanged mitochondrial quality drawn from the FCR. 
 

Having observed tissue-specific differences in mitochondrial function in PBMCs 
compared to the liver of control and IDA animals, we next studied for the possibility of 
mitochondrial damage. As a surrogate we investigated a potential loss of mitochondrial 
outer membrane mtOM integrity by quantifying the cytochrome c control efficiency jcyt c 
[11]. jcyt c did not show significant differences neither in PBMCs nor in the liver when 
comparing control to IDA rats (Figure 4a and b). Consequently, damage of the mtOM could 
be ruled out as a cause for differences in PBMC mitochondrial respiration between the 
two groups. Furthermore, in PBMCs of IDA rats an increase in E-L coupling efficiency was 
detected (Figure 4c), indicating an improved coupling of the ET to the phosphorylation of 
ADP. This may likewise be underlying the observed increase in mitochondrial respiration. 
In the liver, E-L coupling efficiency remained stable (Figure 4d), whereas the E-P control 
efficiency was decreased in IDA liver homogenates as compared to the controls (Figure 
4f), indicating a decreased capacity of the oxidative phosphorylation system [13,28,32]. 
In PBMCs, the E-P control efficiency remained unchanged (Figure 4e). 
 

Figure 4. Effects of IDA on 
flux control efficiencies in 
rat PBMCs and liver. (a) 
and (b) Cytochrome c 
control efficiency (jcyt c = 1-
PMP/PMcP) indicates 
integrity of the outer 
mitochondrial membrane. 
(c) and (d) E-L coupling 
efficiency (jE-L = 1-PML/PME) 
indicates preserved 
coupling of electron transfer 
to phosphorylation of ADP. 
(e) and (f) E-P control 
efficiency (1-PMcP/PME) 
indicates the limitation of 
the OXPHOS capacity due to 
the capacity of the 
phosphorylation system. N 
= 8 rats per group. An 
unpaired two-tailed 

student’s t-test was applied for all normal distributed results; a Mann-Whitney-U test was 
applied for the non-parametric results shown in (c), (d) and (e). Values are shown as 
median ± interquartile range. p-Values are shown in the graphs. 
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Figure 5. Correlation analysis 
of PBMC mitochondrial 
respiration and liver 
mitochondrial respiration in 
control and IDA. Spearman’s 
rank correlation in the 
measured respiratory states in 
PBMCs and liver: (a) ROX; (b) 
PML; (c) PMP; (d) PMcP; (e) PME; 
(f) PGME; (g) PGMSE; (h) 
OctPGMSE; (i) SE; (j) SGpE. N = 8 
rats per group. Statistical 
significance of the correlation 
was tested using an unpaired 
two-tailed student’s t-test. The 
correlation coefficients 
(r_Spearman) and the p-values 
are shown in the graphs. 
 
 
 
2.3.   PBMC mitochondrial 
respiration was not 
correlated with liver 
mitochondrial respiration 
 

To investigate if 
mitochondrial respiration in 
PBMCs reflects liver 
mitochondrial respiration, we 
analyzed the correlation of the 
respiratory states shown in 
section 2.2. (Figure 5a-j). In 
none of the states, PBMC 
mitochondrial respiration was 
significantly linked to liver 
mitochondrial respiration. 
Consequently, measurement of 
mitochondrial respiration in 
PBMCs does not reflect liver 
mitochondrial function. 
Nevertheless, PBMCs may be 
used as a surrogate for 
mitochondrial dysfunction in 
other specific diseases.  

3. Discussion 
 

We found that IDA led to different effects on mitochondrial respiratory capacity in 
permeabilized PBMCs and liver homogenates. Surprisingly, IDA resulted in an increase of 
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mitochondrial activity in PBMCs for which different factors may be responsible. We 
observed a relative expansion of monocytes when comparing PBMCs from IDA versus 
control animals. Thus, it will be of interest in future investigations to study if 
mitochondrial respiratory capacity differs between various leucocyte species in general, 
but also in response to iron deficiency as suggested in previous studies [33,34]. However, 
in contrast to these studies, we did not detect any differences in mitochondrial outer 
membrane integrity as determined by the jcyt c, but we found an increase in mitochondrial 
density in PBMCs as shown by higher CS activity, likewise explaining the increase in 
mitochondrial respiration. Nonetheless, the increase in mitochondrial activity in PBMCs 
of IDA rats was surprising because iron deficiency in vitro has been demonstrated to result 
in impaired Fe-S cluster synthesis for the respiratory complexes and reduced 
mitochondrial activity [8,9,35]. However, most of those studies have been performed in 
vitro and iron deficiency was often induced by the addition of an iron chelator. 
Nonetheless, the increase in mitochondrial density suggests the presence of a 
compensatory mechanism, by which mitochondrial number or longevity of mitochondria 
increase to compensate for impaired mitochondrial activity as a consequence of iron 
deficiency. This is in line with a recent observation indicating that the age of mitochondria 
determines their metabolic activity [36]. 
 

Compared to the results of mitochondrial activity in cardiomyocytes and skeletal 
muscle fibers described in literature, mitochondria in the liver did not show a decrease in 
mitochondrial respiration induced by IDA in our study [15-19]. Plausible explanations 
might be that those studies on morphological changes of mitochondria in different organs 
and cells used mostly animals whose iron deficiency or IDA was induced over a longer 
period of time [15-21]. In contrast, we used a short-term phlebotomy model to induce IDA 
that might not reduce the amount of iron in the liver to an extent required for restricting 
iron supply to mitochondria leading to impairment of mitochondrial respiration. In 
addition, the liver is a central organ of iron storage and iron regulation. Therefore, short-
term induction of iron deficiency by phlebotomy may be compensated by iron 
mobilization within this organ, thereby delivering enough iron to maintain hepatic 
mitochondrial function. It will be of interest to study, if long-lasting persistence of iron 
deficiency changes the phenotype of hepatic mitochondrial function. This is indicated by 
observations made in mice with genetic and dietary iron overload, where only long-term 
exposure to those stressors resulted in altered mitochondrial iron status and activity [13]. 
Finally, it has to be kept in mind that iron availability affects multiple other metabolic 
pathways including tricarboxylic acid (TCA) cycle activity, lipid and protein synthesis, 
which may affect mitochondrial structure and function [37]. 
 

Our study suggests that mitochondrial function in PBMCs and liver is not 
comparable at least in the setting of IDA. Therefore, changes in mitochondrial activity in 
PBMCs are not associated with alterations of mitochondrial function in the liver. Our 
results do not exclude, however, that mitochondrial activity in PBMCs may indicate 
principal defects or alterations of mitochondrial function present in other specific 
diseases. 

 
4. Materials and methods 
 

4.1. Animal experiments 
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All rat experiments were performed as described before [26]. Age-matched female 
Lewis rats (Charles River Laboratories, United Kingdom) were kept on a standard rodent 
diet containing 180 mg Fe/kg (Ssniff, Soest, Germany) until they reached an age of 8 to 11 
weeks. The animals had free access to food and water and were kept according to 
institutional and governmental guidelines in the animal housing unit of the Medical 
University of Innsbruck with a 12 h light-dark cycle and an average temperature of 20 °C 
± 1 °C. All animal experiments were approved by the Austrian Federal Ministry of Science 
and Research (BMWFW-66.011/0138-WF/V/3b/2016). 
 

 Half of the rats were phlebotomized, 1.8 mL blood was sampled daily for five 
consecutive days (starting one week before death) to induce IDA. After termination of the 
experiment, organs and blood were harvested for further analysis. Total blood counts 
were measured using a VetABC animal blood counter (Scil Animal Care, Viernheim, 
Germany).  
 

4.2. Reticulocyte quantification 
 

Peripheral reticulocytes were measured using flow cytometry. Briefly, full blood 
was stained with Thiazole Orange (Santa Cruz, Dallas, TX, USA) and after identification of 
the single cells using forward and side scatters, the Thiazole Orange positive cells were 
identified as reticulocytes. 
 

4.3. Isolation of PBMCs 
 

PBMCs were isolated as described before [22]. Briefly, rat full blood was diluted 1:3 
with phosphate buffered saline (PBS, Lonza Bioscience, Basel, Switzerland) and loaded 
onto Pancoll separating solution (density 1.077 g/mL, PAN-Biotech, Aidenbach, 
Germany). After centrifugation (1,000 g, 10 min, no brake) the buffy coat was collected, 
and the cells were washed twice with PBS. 
 

4.4. High-resolution respirometry 
 

All measurements were performed as described before [13,27,28]. Briefly, 
mitochondrial respiration was performed using the Oxygraph-2k (O2k, Oroboros 
Instruments, Innsbruck, Austria). Fresh rat liver tissue samples were collected and 
homogenized and PBMCs were isolated from blood samples. Respiratory measurements 
of isolated PBMCs (2 x 106 cells/mL) and liver tissue homogenate (0.5 mg/mL) were 
performed at kinetically saturating oxygen concentrations in mitochondrial respiration 
medium MiR05-Kit (Oroboros Instruments) containing 0.5 mM ethylene glycol tetraacetic 
acid (EGTA), 3 mM magnesium chloride (MgCl2), 60 mM lactobionic acid, 20 mM taurine, 
10 mM monopotassium phosphate (KH2PO4), 20 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 110 mM D-sucrose supplemented with 1 g/l 
essentially fatty acid-free bovine serum albumin (BSA, Sigma-Aldrich, St. Louis, MO, USA). 
Manual titrations of substrates, uncoupler, and inhibitors were performed using Hamilton 
syringes (customized for Oroboros Instruments, Hamilton Central Europe, Giarmata, 
Romania). The following substrate-uncoupler-inhibitor titration (SUIT) protocol was 
used (Supplemental Figures S1 and S2) [38,39]: Isolated PBMCs were permeabilized 
using digitonin (Dig, 2 µg/mL): ROX; non-phosphorylating LEAK respiration was assessed 
by injecting pyruvate (P, 5 mM) and malate (M, 2 mM) as NADH (N)-linked substrates in 
the absence of adenylates: PML; OXPHOS capacity was measured by adding adenosine 
diphosphate (ADP, 2.5 mM) at kinetically saturating concentration: PMP; cytochrome c (c, 
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10 µM) was added to test for the mitochondrial outer membrane integrity: PMcP; stepwise 
titrations of the protonophore carbonyl cyanide m-chloro phenyl hydrazine (U, 0.5 µM 
steps) allowed to reach the maximal electron transfer (ET) capacity: PME; glutamate (10 
mM) was added as an N-linked substrate in non-coupled ET state: PGME; by addition of 
succinate (S, 10 mM) the simultaneous action of N-linked substrates and succinate with 
convergent electron flow in the NS-pathway for reconstitution of the TCA cycle function 
was measured: PGMSE; titration of octanoylcarnitine (Oct, 0.5 mM) enabled the 
simultaneous action of F-and N-linked substrates and S with convergent electron flow in 
the FNS pathway for reconstitution of TCA cycle function and additive or inhibitory effect 
of F-linked substrate Oct to support fatty acid oxidation: OctPGMSE; CI inhibition by 
rotenone (Rot, 0.5 µM) induced succinate-linked ET capacity: SE; titration of 
glycerophosphate (Gp, 10 mM) provided simultaneous action of convergent S-and Gp-
linked electron entry in the SGp-pathway: SGpE; injection of antimycin A (2.5 µM) blocked 
CIII and induced the state of residual oxygen consumption: ROX. Data analysis was 
performed using the software DatLab 7.4 (Oroboros Instruments).  
 

4.5. Plasma and total tissue iron 
 

Plasma iron was measured using QuantiChrom Iron Assay kit (BioAssay Systems, 
Hayward, CA, USA) according to the manufacturer’s instructions. Tissue iron 
determination was performed as described [13,28,40]. After acidic hydrolysis at 65 °C for 
24 h, the iron content was measured using a colorimetric staining solution containing 
sodium acetate and bathophenanthroline disulfonic acid. Total tissue iron content was 
normalized by protein content. 
 

4.6. RNA extraction and quantitative real-time PCR 
 

Liver total RNA was extracted using TRI reagent (Sigma-Aldrich) according to the 
manufacturer’s protocol. After reverse transcription, mRNA expression was analyzed as 
described [13,41]. The following primers were used: Hamp forward 5'-
TGAGCAGCGGTGCCTATCT-3', Hamp reverse 5'-CCATGCCAAGGCTGCAG-3', Hamp probe 
FAM-CGGCAACAGACGAGACAGACTACGGC-BHQ1, Gusβ forward 5'-
ATTACTCGAACAATCGGTTGCA-3', Gusβ reverse 5'-GACCGGCATGTCCAAGGTT-3', Gusβ 
probe FAM-CGTAGCGGCTGCCGGTACCACT-BHQ1. Quantitative real-time PCR reactions 
were performed on the CFX96 PCR System (BioRad, Hercules, CA, USA). Relative gene 
expression was calculated with the ΔΔCt method in the CFX96 Manager software 
(BioRad). The housekeeping gene Gusβ was used as reference control. 
 

4.7. CS activity 
 

CS activity was measured as described [13,28]. A spectrophotometric assay was 
used to measure the enzyme activity in snap-frozen liver homogenates. The sample 
enzymatic reaction mix contained 0.25 % Triton X-100 in aqua dest, 0.31 mM acetyl-
coenzyme A in aqua dest, 0.1 mM 5,50-dithiobis-(2-nitrobenzoic acid) in 1 M Tris–HCl 
buffer (pH 8.1) and 0.5 mM oxaloacetate in 0.1M triethanolamine–HCl-buffer (pH 8.0). 
The absorbance of the reaction product thionitrobenzoic acid was measured at 412 nm 
over 200 s. The resulting enzyme activities were normalized by the protein content of the 
samples. 
 

4.8. Statistics 
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Statistical analysis was carried out using the software GraphPad Prism 9. In case of 
normal distribution statistical significance was determined by an unpaired two-tailed 
student’s t-test. Otherwise, a Mann-Whitney U test was applied. To assess whether PBMC 
mitochondrial respiration is correlated to liver mitochondrial respiration, a Spearman’s 
rank correlation analysis with a two-tailed student’s test was performed. Data was shown 
as median ± interquartile range. p-Values below 0.05 were considered significant. 
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Figure S1. Representative trace of substrate-uncoupler-inhibitor titration (SUIT, 
SUIT-001 O2 ce-pce D003 [38]) protocol for measurement of PBMC mitochondrial 
respiration using high-resolution respirometry. ROUTINE (R) respiration was 
measured in the presence of isolated PBMCs. Subsequently, the plasma membrane was 
permeabilized using digitonin (Dig): Residual oxygen consumption (Rox) ; pyruvate and 
malate (PM) in the absence of adenosine diphosphate (ADP) to measure NADH-linked (N) 
LEAK-respiration (L); kinetically saturating concentration of ADP to measure OXPHOS-
capacity (P); cytochrome c (c) to detect mitochondrial outer membrane integrity; 
uncoupler titrations (U) to measure electron transfer (ET) capacity (E); glutamate (G) to 
measure N-linked ET capacity; succinate (S) to measure NS-linked ET capacity; 
octanoylcarnitine (Oct) to detect FNS-linked ET capacity; Complex I inhibitor rotenone 
(Rot) to measure S-ET capacity; glycerol-3-phosphate (Gp) to measure SGp-ET capacity; 
antimycin A (Ama) to detect Rox. Experiment: 2020-07-22 PS3-01 IDA 6 Chamber A. O2 
concentration (blue trace) and O2 flow per cell (red trace). 
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Figure S2. Representative trace of SUIT protocol (SUIT-001 O2 mt D001 [39]) for 
measurement of liver mitochondrial respiration using high-resolution 
respirometry. Rox measured in the presence of liver homogenate (thom); pyruvate and 
malate (PM) in the absence of adenosine diphosphate (ADP) to measure NADH-linked (N) 
LEAK-respiration (L); kinetically saturating concentration of ADP to measure OXPHOS-
capacity (P); cytochrome c (c) to detect mitochondrial outer membrane integrity; 
uncoupler titrations (U) to measure electron transfer (ET) capacity (E); glutamate (G) to 
measure N-linked ET capacity; succinate (S) to measure NS-linked ET capacity; 
octanoylcarnitine (Oct) to detect FNS-linked ET capacity; Complex I inhibitor rotenone 
(Rot) to measure S-ET capacity; glycerol-3-phosphate (Gp) to measure SGp-ET capacity; 
antimycin A (Ama) to detect Rox. Experiment: 2020-07-22 PS3-01 IDA 6 Chamber B. O2 
concentration (blue trace) and O2 flux per mass (red trace). 
 


