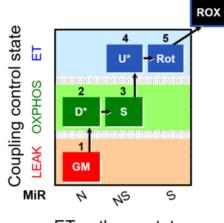
Oroboros SUIT protocols

SUIT-011(01):1-4 (2019) Version 01: 2019-01-11 ©2019 Oroboros http://wiki.oroboros.at/index.php/SUIT-011

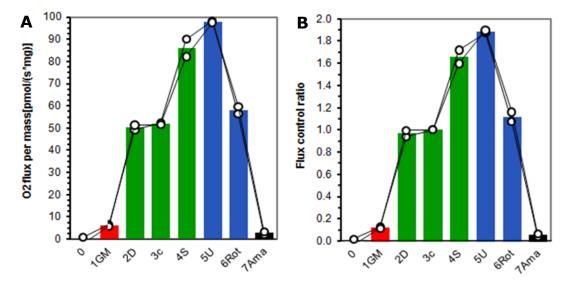


SUIT-011

SUIT-category: NS(GM) Mitochondrial preparations, mt

- Physiologically relevant maximum mitochondrial respiratory capacity,
- Additivity at the Q-junction,
- Coupling/pathway control.

Experimental time: 1.5 to 2 h


ET-pathway state

1. The O2k-Demo experiment

Permeabilized fibres from horse skeletal muscle (*Triceps branchii;* 1.5 to 2.5 mg wet weight) were prepared (Pesta and Gnaiger 2012) and incubated at 37 °C in the O2k with 2 mL MiR05.

Figure 1. SUIT-011: Oxygen concentration ([μ M] blue line) and oxygen flux per mg wet weight of muscle ([pmol·s⁻¹·mg⁻¹] red line) in permeabilized fibres from horse skeletal muscle (from Lemieux et al 2019).

Figure 2 A: Mitochondrial O₂ flux corrected for *Rox*. **B:** Flux control ratios normalized to ET-capacity.

2. SUIT events, marks, and respiratory states

In the SUIT protocol (Fig. 1) a sequence of respiratory states is induced experimentally by stepwise titrations (Events, E): As a consequence of the titrated compounds, respiration reaches a new steady-state, and a mark (M) is set for numerical evaluation of the corresponding respiratory state.

1GM;2D;2c;3S;4U;5Rot;6Ama

E	Μ	1G,1M 1GM	10 mM glutamate & 2 mM malate. GM_L or GM_L: N-LEAK respiration, N_L NADH-linked substrates glutamate&malate (type N; CI- linked pathway to Q). Non-phosphorylating resting state (LEAK state); L _n in the absence of ADP, ATP, AMP (no adenylates).
Е		2D	After titration of a saturating concentration of ADP (D), flux increases to active respiration.
	Μ	2D	GM_P or GM_P : N-OXPHOS capacity, N _P
			OXPHOS capacity, <i>P</i> (with saturating [ADP]), with NADH- linked substrates glutamate&malate.
Е		2c	10 μ M cytochrome <i>c</i> is added as a test for the intactness of the mitochondrial outer membrane (mtOM).
	Μ	2c	GMc_P or GMc_P : Cytochrome c test for quality
			control Addition of cytochrome <i>c</i> yields a test for integrity of the mtOM. Stimulation by added cytochrome <i>c</i> would indicate an injury of the mtOM and limitation of

Е

Е

*

E **3S** Respiration is further stimulated by succinate, S.

M 3S GMS_P or GMS_P: NS-OXPHOS capacity, NS_P

Respiratory stimulation by further addition of succinate, S, to type N substrates, with convergent electron flow in the NS-pathway (CI&II-linked pathway to the Qjunction) for reconstitution of TCA cycle function, in the coupled state as an estimate of OXPHOS-capacity, *P* (Gnaiger 2009).

E **4U*** An uncoupler, U, is titrated stepwise to test for a possible increase of noncoupled flux compared to state GMS_P .

M 4U* GMS_E or GMS_E: NS-ET capacity, NS_E

Uncoupler titration (avoiding inhibition by high uncoupler concentrations) to obtain electron transfer (ET) capacity (noncoupled ET-state), as a test for limitation of OXPHOS-capacity by the phosphorylation system (ANT, ATP synthase, phosphate transporter) relative to ET-capacity, *E*.

5Rot Inhibition of CI by rotenone.

M 5Rot S_E or S_E: S-ET capacity

step.

6Ama S-pathway ET-capacity after blocking CI with rotenone. Inhibition of CIII by Antimycin A or myxothiazole.

M 6Ama ROX: residual oxygen consumption

Rox is due to oxidative side reactions, estimated after addition of Antimycin A (inhibitor of CIII). *Rox* is subtracted from oxygen flux as a baseline for all respiratory states, to obtain mitochondrial respiration (mt).

SUIT extension: CIV activity.

3. Strengths and limitations

- * A succinate concentration of >10 mM may be required for saturating S_E capacity.
- * Rox might be inhibited slightly further by inhibition of CIV by cyanide (KCN; 1 μ M). But cyanide inhibits not only CIV, but also catalase and other oxygenases involved in ROX.
- + NS-OXPHOS capacity provides a physiologically relevant estimate of maximum mitochondrial respiratory capacity.
- + Comparison of GM- with PM-capacity yields important information on N-pathway respiratory control upstream of CI (Lemeux et al 2017; Votion et al 2012).

- + Glutamate is easier to prepare compared to pyruvate.
- Application of the cytochrome c test early in the protocol ensures comparability of all states in case of any effect of "c".
- + Reasonable duration of the experiment.
- GM and PM yield typically identical fluxes in human skeletal muscle fibres. However, PM is the superior alternative to GM: the fraction of the N-pathway is lower and of the S-pathway is higher with GM compared to PM (GM_P is inhibited by the CII inhibitor malonic acid to a larger extent than PM_P). PM, therefore, yields a more sensitive assay for the diagnosis of injuries in the Npathway, since an impairment of N-pathway capacity can be compensated partially by activation of the S-pathway. This is a disadvantage compared to SUIT-004 and SUIT-008 for diagnosis of N-capacity.
- To detect an additive effect of P after GM_P, pyruvate would have to be added as step 3 (before S). However, inhibition of respiration was observed after titration of P (5 mM) in horse skeletal muscle fibres (Votion et al 2012), which was not the case when P was titrated in steps of 1 mM.
- When evaluating the additive effect of the N- and Spathway, it has to be considered that NS_{P} - and NS_{E} capacities can only be compared with N_{P} - and S_{E} capacities. This is not a problem when $NS_{P} = NS_{E}$ (Gnaiger 2009). Otherwise, it may be assumed that $S_{P} =$ S_{E} (Votion et al 2012), such that NS_{P} can be compared with $N_{P} + S_{P}$. SUIT-004 should be chosen for the additive effect in the ET-state.
- *Rox* may be lower in substrate states earlier in the SUIT protocol. Therefore, this *Rox* measurement is frequently taken as a methodological control rather than as the final basis of *Rox* correction of mitochondrial respiration (mt).
- Careful washing is required after the experiment to avoid carry-over of inhibitors and uncoupler.
- CIV activity is not measured, to save experimental time.

4. References

- Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837–45. »Biolast link«
- Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 4th ed. Mitochondr Physiol Network 19.12. Oroboros MiPNet Publications, Innsbruck:80 pp. ->Biolast link«
- Lemieux H, Blier PU, Gnaiger E (2017) Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-

junction in permeabilized fibers. Sci Rep 7:2840, DOI:10.1038/s41598-017-02789-8. - »<u>Biolast link</u>«

- Lemieux H, Votion DM, Doerrier C, Gnaiger E (2019) Mitochondrial respiration in permeabilized fibres: Needle biopsies from horse skeletal muscle. Mitochondr Physiol Network 12.23(08):1-4. »Biolast link«
- Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol Biol 810:25-58. - <u>>Bioblast link</u>«
- Votion DM, Gnaiger E, Lemieux H, Mouithys-Mickalad A, Serteyn D (2012) Physical fitness and mitochondrial respiratory capacity in horse skeletal muscle. PLoS ONE 7(4):e34890. »Bioblast link«

Communicated by Doerrier C, Gnaiger E

Oroboros Instruments, Schöpfstr 18, A-6020 Innsbruck, Austria instruments@oroboros.at; www.oroboros.at