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Abstract 
 

The protonmotive force pmF establishes the link 
between electrical and chemical components of 
energy transformation and coupling in oxidative 
phosphorylation in the mitochondrial electron 
transfer system. The electrical part is corresponding 
to the mitochondrial membrane potential ΔΨmt and 
the chemical part is related to the transmembrane pH 
gradient ΔpH. Although the contribution of ΔpH to 
pmF is smaller than that of ΔΨmt, ΔpH plays an 
important role in mitochondrial transport processes 
and regulation of reactive oxygen species production.  
Separate measurement of ΔΨmt and ΔpH allows for 
calculation of pmF. Methods for monitoring ΔΨmt such 
as fluorescence dyes are generally available, while 
determination of ΔpH is more challenging.  

In this review, we focus on the application of the 
fluorescence ratiometric method using the 
acetoxymethyl ester form of 2,7-biscarboxyethyl-
5(6)-carboxyfluorescein (BCECF/AM) for real-time 
monitoring of the intramitochondrial pH in isolated 
mitochondria. Knowing the intra- and 
extramitochondrial pH allows for calculating the 
ΔpH. Application of specific ionophores such as 
nigericin or valinomycin, exerts the possibility to 
dissect the two components of the pmF in different 
directions. Furthermore, we tried to summarize 
those mitochondrial processes, such as production of 
reactive oxygen species, where the ΔpH has an 
important role.  
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1. Protonmotive force 
 

The chemiosmotic theory on protonmotive force pmF (Δp, or ∆mFH+) was postulated 
by Peter Mitchell in 1961 in four theorems describing that ATP synthesis is coupled to the 
electrochemical gradient across the mitochondrial inner membrane mtIM (Gnaiger 2020; 
Mitchell 1961, 1967; Mitchell, Moyle 1968). The oxidation of respiratory fuel substrates 
by electron transfer to O2 is accompanied by H+ translocation through respiratory 
Complexes I, III and IV from the matrix to the intermembrane space. This process results 
in a negatively charged matrix and positively charged intermembrane space. The proton 
and charge concentration difference create an electrochemical gradient called pmF.  The 
electrochemical gradient is utilized to synthetize ATP in the electron transfer system ETS. 

The pmF has a chemical part ΔdFH+ related to ΔpH and electrical component ΔelFp+ 
corresponding to mitochondrial membrane potential ΔΨmt (Gnaiger 2020), 
 

ΔmFH+ = ΔdFH+ + ΔelFp+ 
 

ΔdFH+ is characterized by H+ movement from the chemical partial force of diffusion caused 

by concentration gradient linked to H+ potential difference. ΔelFp+ is the electrical partial 
force related to cation charge irrespective of the nature of the ion expressed per proton 
charge. The net distribution of ions (not only H+) generates an internal electrical field on 
the two sides of mtIM. The cations move according to the electrical potential, from the 
positive side of the membrane to the negative side and the anions in the opposite 
direction. 
 

The components of the pmF can be measured separately. Methods for monitoring 
ΔΨmt are generally available, whereas determination of ΔpH is more challenging. In many 
studies contribution of ΔpH to pmF is ignored reporting only ΔΨmt values, even in cases 
when a conversion from ΔpH to ΔΨmt is not proven (shift between the two components 
can occur in the presence of specific ionophores; Komlódi et al 2018).  
 

1.1. Mitochondrial membrane potential 
 

Lipophilic cationic fluorescence probes and ion-selective electrodes are most 
frequently used methods to measure changes of ΔΨmt real-time. Lipophilic cations such as 
safranin are able to enter the negatively charged mitochondrial matrix, bind to anionic 
sides and create dimers or oligomers leading to decrease of the fluorescence signal due to 
fluorescence quenching (Akerman, Wikström 1976; Figueira et al 2012; Kauppinen, 
Hassinen 1984; Krumschnabel et al 2014). In the LEAK state, when ΔΨmt is the highest 
(~170 mV), safranin accumulates in the mitochondrial matrix which is reflected in the 
decrease of the fluorescence signal (Figure 1A). If ΔΨmt is low, e.g. in the presence of ADP 
in the OXPHOS state (ADP decreases ΔΨmt by ~25 mV; Chinopoulos et al 2010), safranin 
partially remains in the extramitochondrial compartment which is shown by the increase 
of the fluorescence signal. Upon addition of an uncoupler (protonophore) ΔΨmt would 
further decrease.  A linear relationship between fluorescence intensity and ΔΨmt can be 
observed for certain concentration ranges and ratios of safranin and mitochondria 
(Figueira et al 2012).  

 

ΔΨmt can be also estimated based on the distribution of a lipophilic cation such as 
tetraphenylphosphonium ion TPP+ detected by an ion-selective electrode (Kamo et al 
1979; Komlódi et al 2018; Rottenberg, 1984). The accumulation of TPP+ in the 
mitochondria is described by the mitochondrial uptake and binding to the outer and inner 
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surface of the mtIM based on the Nernst equation. The advantage of this method is that 
the absolute ΔΨmt expressed in mV can be easily determined.  Upon hyperpolarization of 
ΔΨmt, TPP+ accumulates in the matrix leading to decrease of extramitochondrial TPP+ 
concentration accessible to the ion-selective electrode. Noteworthy, TPP+ is more 
sensitive in the range of high ΔΨmt values than safranin (Starkov, Fiskum 2003). 
 

 
 

Figure 1. Mitochondrial membrane potential (A) and intramitochondrial pH pHin 
and transmembrane pH ΔpH (B) in mitochondria isolated from guinea pig brain. 
Mt-membrane potential ΔΨmt was measured by safranin fluorescence, pHin was monitored 
by BCECF and ΔpH was calculated as described in detail by Komlódi et al 2018. Addition 
of succinate (5 mM) led to hyperpolarization of ΔΨmt and increase of pHin; ADP (2 mM) 
depolarized ΔΨmt and decreased pHin and ΔpH; nigericin (20 nM) increased ΔΨmt and 
decreased ΔpH; carboxyatractilozide CAT (2 µM; inhibitor of the adenine nucleotide 
translocase) increased pHin owing to H+ accumulation in the intermembrane space; 
carbonyl cyanide-p-trifluoromethoxyphenylhydrazone FCCP (250 nM; uncoupler) 
decreased the proton gradient, therefore depolarized ΔΨmt and decreased pHin. A mixture 
of ionophores (8 µM nigericin; 2.5 µM gramicidin; 8 µM monensin) was added to equalize 
pHin and extramitochondrial pH pHex. The BCECF fluorescence was calibrated by KOH. The 
measurements were carried out in the standard medium as follows: 125 mM KCl, 20 mM 
HEPES, 2 mM KH2PO4, 0.1 mM EGTA, 1 mM MgCl2, 0.025 % fatty-acid free bovine serum 
albumin; pH 7.0.  
 

1.2. ΔpH  
 

Although the contribution of ΔpH to pmF is smaller than that of ΔΨmt, ΔpH plays an 
important role in mitochondrial transport processes such as transport of inorganic 
phosphate (Hoek et al 1970) or calcium influx (Bernardi, Azzone 1979).  

 

Fluorescent indicators such as the acetoxymethyl ester form of 2,7-biscarboxyethyl-
5(6)-carboxyfluorescein BCECF/AM (Jung et al 1989; Komlódi et al 2018) are widely used 
approaches to measure pHin. Mitochondria are first loaded with the membrane-
permeable esterified form of the indicator, which is then hydrolyzed by 
intramitochondrial esterases to non-permeable, free fluorophores, whose fluorescence 
depends on their protonation/deprotonation (Zółkiewska et al 1993). BCECF has the 
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advantage of having pH-dependent and pH-independent regions in its excitation 
spectrum, therefore, its fluorescence can be monitored at two excitation wavelengths 
allowing for ratiometric fluorescence (Han, Burgess 2010; Komlódi et al 2018). These data 
are correlated to pH values after equalizing intramitochondrial pH (pHin) and 
extramitochondrial pH (pHex) using a mixture of ionophores as previously described 
(Komlódi et al 2018; Tretter et al 2007).  
 

In isolated mammalian mitochondria, in vitro ΔpH depends on the composition of 
the respiration medium, substrates (pathway control state) and respiratory state 
(coupling control states). Addition of respiratory substrates e.g. succinate leads to 
alkalization of pHin in the LEAK state (without ADP) owing to H+ efflux from the 
mitochondrial matrix via respiratory Complexes (Figure 1). Addition of ADP decreases 
pHin due to H+ influx into the mitochondrial matrix via the proton channel of the ATP 
synthase. Uncouplers further decrease pHin, ΔpH and ΔΨmt due to proton translocation to 
the matrix. In a medium containing saccharose and low [K+] (4 mM), the ΔpH was ~ 0.6-
0.8, whereas at high K+ concentration (~120 mM) ΔpH was 02.-0.3 in the presence of 2 
mM phosphate (Komlódi et al 2018; Mitchell, Moyle 1968). Vajda et al 2009 also measured 
a ΔpH lower than 0.15 in a buffer with 120 mM KCl with 10 mM phosphate. Inorganic 
phosphate has an important role in regulation of matrix pH. Pi enters the mitochondrial 
matrix via the Pi/OH- exchanger or via co-transport with protons resulting in acidification 
of the matrix and decrease of ΔpH. Decrease of pHin is attributed to decrease of ROS 
generation, whereas alkalization is ascribed to elevated ROS release (Komlódi et al 2018; 
Selivanov et al 2008). In succinate-energized guinea pig brain mitochondria in the LEAK 
state the ΔpH was higher in the absence of Pi than in the presence of it (data not shown). 
Importantly, BCECF fluorescence can be easily calibrated after dissipation of ΔpH using 
ionophores followed by adding KOH solutions and measuring BCECF fluorescence and pH 
of the solution with glass electrode. The pHin and pHout are equal as a consequence of 
ionophore action (Komlódi et al 2018; Tretter et al 2007).  
 

1.3. Ionophores 
 

Ionophores are widely used compounds when studying ΔΨmt or ΔpH in isolated 
mitochondria. Valinomycin is a K+ ionophore and its effect is dependent on its 
concentration and on the K+ content (Bernardi 1999; Komlódi et al 2018; Ligeti, Fonyó 
1977). Valinomycin added in the nM range, in the presence of low K+ concentration (~ 4 
mM) increases pHin which is explained by H+ efflux and Pi/OH- exchange leading to 
depolarization of ΔΨmt and increase of mitochondrial respiration. Nigericin which is an 
electroneutral K+/H+ antiporter is widely used to shift ΔpH further to ΔΨmt by decrease of 
pHin and compensatory increase of ΔΨmt (Bernardi 1999; Henderson et al 1969; Garlid, 
Paucek 2001; Komlódi et al 2018; Lambert, Brand 2004; Selivanov et al 2008). It is, 
however, important to note that nigericin added at the lowest possible concentration 
which caused the maximal hyperpolarization of ΔΨmt in guinea pig brain mitochondria 
was not able to fully dissipate ΔpH leading to a decrease of Pi flux and of Pi concentration 
in the matrix, but it established a new equilibrium at a lower pHin in the presence of high 
[K+] (Komlódi et al 2018). Decrease of [Pi] in the matrix reduces F1FO-ATPase activity 
resulting in decrease of mitochondrial respiration in isolated mitochondria (Metelkin et 
al 2009).  
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2. Role of ΔpH in reactive oxygen species generation 
 

It is well-known that production of mitochondrial reactive oxygen species (ROS) is 
sensitive to changes of the pmF components (Komlódi et al 2018; Lambert and Brand 
2004; Selivanov et al 2008). In murine mitochondria, succinate-evoked reverse electron 
transfer (RET) in the LEAK state appears to promote the highest rate of ROS production 
which is highly sensitive to changes of the components of pmF (Votyakova, Reynolds 
2008; Zoccarato et al 2011). It is generally accepted that decrease of the ΔΨmt leads to a 
decrease in RET-evoked ROS formation supported by succinate (Korshunov et al 1997; 
Komlódi et al 2018; Lambert, Brand 2004; Selivanov et al 2008; Votyakova and Reynolds 
2001), whereas hyperpolarization of the ΔΨmt induces ROS production. Increase of the 
absolute pH rises succinate-supported ROS generation in the LEAK state due to the 
stabilization of semiquinone radicals (Komlódi et al 2018, Selivanov et al 2008). It is 
difficult to evaluate the direct effect of ΔpH on ROS production, because ΔpH usually 
changes in the same direction as ΔΨmt. For example, uncouplers cycling across the mtIM 
with protons decreasing both the ΔΨmt and the ΔpH which leads to increase of respiration 
and decrease of ROS production. However, it is hard to evaluate whether the reduction in 
ROS production were caused by changes in ΔΨmt or ΔpH. In order to determine which 
component of the pmF has a greater role in regulation of RET, ionophores such as nigericin 
(K+/H+ antiporter) and valinomycin (K+ ionophore) can be used to dissect the components 
of the pmF. There is no general agreement on how these ionophores influence the RET-
induced ROS generation.  Nigericin hyperpolarized ΔΨmt, decreased ΔpH and moderately 
increased RET-driven ROS formation using succinate in brain and heart mitochondria 
isolated from guinea pigs (Komlódi et al 2018).  Whereas valinomycin depolarized ΔΨmt, 
increased ΔpH and decreased the rate of ROS production using succinate as CHNO-fuel 
substrate.  Based on these results it can be concluded that the ΔΨmt is the dominant 
component of the pmF over ΔpH in modulation of succinate- or α-glycerophosphate-
induced ROS formation in the LEAK state in guinea-pig brain mitochondria (Komlódi et al 
2018). Lambert and Brand (2004), however, described that succinate-evoked RET 
depends more on ΔpH than on ΔΨmt using nigericin, whereas Selivanov et al (2008) 
revealed that the acute pH rather than ΔpH is dominant over ΔΨmt in regulation of RET. 
Although the literature is controversial on which component of pmF has a greater role in 
regulation of RET, it is obvious that the contribution of ΔpH to pmF is not negligible.  

 
3. Role of ΔpH and matrix pH in the reversal of F1FO-ATPase  
 

The mitochondrial F1FO-ATPase is able to synthesize and hydrolyze ATP (Boyer 
2002; Rouslin et al 1986; Walker 1994). F1FO-ATPase uses the pmF to generate ATP, thus, 
its reversal also depends on the component of the pmF. Since ΔpH is the smaller 
component of the pmF, the reversal of F1FO-ATPase mostly depends on ΔΨmt. The ΔΨmt 

values at which the F1FO-ATPase starts hydrolyzing ATP called reversal potential is mainly 
controlled by the ADP/ATP ratio in the matrix, phosphate concentration, and H+/ATP 
coupling ratio (Chinopoulos et al 2010 and 2011). Decrease of ΔΨmt e.g. owing to 
inhibition of the ETS, results in the reversal of F1FO-ATPase allowing hydrolysis of 
mitochondrial ATP generated via substrate-level phosphorylation catalyzed by succinate-
CoA ligase to maintain ΔΨmt (Chinopoulos et al 2010 and 2011; Kiss et al 2014; Komlódi 
et al 2018; Lambeth et al 2004). Under this condition F1FO-ATPase operates in the reverse 
mode, whereas ANT in the forward mode. This has paramount importance under 
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pathological conditions, because in a specific ΔΨmt range mitochondria can avoid using 
cytosolic ATP to maintain ΔΨmt, thus showing better survival rate for the cells. However, 
further decline of ΔΨmt -despite of the ATP hydrolysis- leads to reversal of the adenine 
nucleotide translocase ANT (Metelkin et al 2009), thus, transporting cytosolic ATP into 
the mitochondria (Chinopoulos et al 2010). ANT has its own reversal potential which is 
controlled by the participating components such as the ADP/ATP ratio in the matrix and 
cytosol (Chinopoulos et al 2010). 

 

Although ΔpH is the smaller component of the pmF, the question arises how it would 
affect the reversal potential of the F1FO-ATPase and ANT. Chinopoulos (2011) revealed 
that when ΔpH was kept constant using computer simulations, the reversal potentials of 
F1FO-ATPase and ANT were moved to the more depolarizing potentials. When pHin and 
thus ΔpH was decreased, the reversal potentials were shifted to the polarizing potentials. 
Importantly, the reversal potential of F1FO-ATPase was more affected by decline of pHin 
than that of ANT.  
 

It has been recently published that individual cristae can have their own local ΔΨmt 
thus depolarization might affect some cristae but not all (Wolf et al 2019). In line with 
this, Rieger et al (2014) observed that lateral pH gradient exists between respiratory 
complexes and the F1FO-ATPase leading to built-up of intracristal local pmF. Since the local 
pmF around the F1FO-ATPase was low during OXPHOS (Rieger et al 2021), the inhibitory 
factor 1, which is an endogenous regulator of F1FO-ATPase responsible for its dimerization 
(Campanella et al 2009), was required to block reversal of the F1FO-ATPase (Rieger et al 
2021). 
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