

wiki.oroboros.at/index.php/O2k-Publications: Exercise physiology;nutrition;life style High-resolution respirometry: Exercise physiology

Effects of Ultramarathon Running on Mitochondrial Function of Platelets and Oxidative Stress Parameters: A Pilot Study

Florian Hoppel^{1,2*}, Elisa Calabria³, Dominik H. Pesta^{2,4,5,6}, Wilhelm Kantner-Rumplmair⁷, Erich Gnaiger^{1,8} and Martin Burtscher^{2*}

Table 1: Flux control ratios and flux control efficiencies before competition (PRE), immediately after the race (POST) and 24 h after finishing (REC)

	PRE	After				Change (%)	
		POST	REC	P	η ²	ΔPRE-POST	APRE-REC
Flux control ratio)5						
R	0.250 ± 0.061	0.291 ± 0.064	0.246 ± 0.049	0.226	0.257	+16.34	-1.84
PM _R	0.327 ± 0.054	0.334 ± 0.067	0.334 ± 0.030	0.854	0.031	+2.07	+2.18
PML	0.199 ± 0.029	0.256 ± 0.040	0.223 ± 0.047	0.036	0.566	+28.37*	+11.82
PMp	0.452 ± 0.051	0.484 ± 0.058	0.454 ± 0.087	0.789	0.046	+7.01	+0.43
PGM _P	0.566 ± 0.053	0.611 ± 0.048	0.563 ± 0.080	0.384	0.174	+7.93	-0.46
Flux control effic	ciencies						
1-PML/PMP	0.556 ± 0.069	0.450 ± 0.095	0.501 ± 0.095	0.005	0.731	-19.18*	-9.91
1-PMp/PGMp	0.202 ± 0.051	0.212 ± 0.085	0.199 ± 0.062	0.835	0.035	+ 5.25	-1.25
1-SE/PGMSp	0.332 ± 0.033	0.350 ± 0.039	0.323 ± 0.055	0.846	0.041	+ 8.23	+1.85

Values are shown as means \pm SD, p values of ANOVA and η^2 (effect size) of both flux control ratios and flux control efficiencies PRE, POST and REC. Percental changes PRE-POST and PRE-REC are given. Drop-outs are not included in statistics. *Significant change in PRE-POST post hoc test, p = 0.05.

Table 2: Abbreviations

JO_2	Respiratory O ₂ flux	
Mitochondrial fluxes		
R	JO ₂ of ROUTINE respiration depending on endogenous substrates	
PM _R	JO ₂ of ROUTINE respiration in the presence of pyruvate and malate	
PML	JO ₂ of LEAK respiration in the presence of pyruvate and malate	
PM _P	JO ₂ of OXPHOS in the presence of pyruvate and malate	
PGM _P	JO ₂ of OXPHOS in the presence of pyruvate, malate, glutamate	
PGMS _P	JO ₂ of OXPHOS in the presence of pyruvate, malate, glutamate, succinate	
S	JO ₂ of the CII-linked electron transfer pathway state	
Flux control ratios		
R	R normalized by PGMSp	
PM_R	PM _R normalized by PGMS _P	
PM_L	PM _L normalized by PGMS _P	
PM _P	PMp normalized by PGMSp	
PGM_P	R normalized by PGMS _P	
Flux control efficiencies		
1-PM _L /PM _P	PML normalized by PMP. Step analysis of ADP titration	
1-PMp/PGMp	PMp normalized by PGMp, Step analysis of glutamate titration	
1-SE/PGMSP	S _E normalized by PGMS _P . Step analysis of Rotenone titration	

O2k-brief communicated by C Cecatto and L Tindle-Solomon Oroboros Instruments

wiki.oroboros.at/index.php/O2k-Publications: Exercise physiology;nutrition;life style High-resolution respirometry: Exercise physiology

Platelet mitochondrial function and race performance

Figure 1. Regression (95 % confidence intervals) of change in PGM_P PRE-POST to race performance. Changes of FCRs of the NADH-linked OXPHOS state (substrates: PGM) PRE-POST to race time of the participants.

Correlation between respirometry parameters and markers of muscle injury

Figure 2. Regression (95 % confidence intervals) of HRR parameters to changes in indirect markers for tissue damage. **(A)** FCRs of the LEAK state (PML) PRE to changes of creatine kinase (CK) PRE-POST. **(B)** FCRs of the NADH-linked OXPHOS state (substrates: PGM) to changes of lactate dehydrogenase (LDH) PRE-POST.

Ultramarathon running induced an increase in LEAK O_2 flux of platelet (PLT) mitochondria. There were inverse correlations between race time and N-linked substrate state PRE-POST, and changes in CK and LDH levels were significantly correlated to PLT mitochondrial LEAK and N-linked respiration pre-race. Increase in the relative N-linked respiration in faster runners might suggest PLT Complex I as an indicator of physical fitness. The higher PLT LEAK pre-race and diminished increase of CK during the race may represent a prophylactic preconditioning. Furthermore, ultramarathon runners showed increased intrinsic uncoupling $(1-PM_L/PM_P)$ post-race compared to pre-race, which could be interpreted as protection against thromboembolism formation.

Reference: Hoppel F, Calabria E, Pesta DH, Kantner-Rumplmair W, Gnaiger E, Burtscher M (2021) Effects of ultramarathon running on mitochondrial function of platelets and oxidative stress parameters: a pilot study. Front Physiol 12:632664.

 $\textbf{Text slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203.} \underline{doi:10.26124/bec:2020-0001.v1}$

O2k-brief communicated by C Cecatto and L Tindle-Solomon Oroboros Instruments

