wiki.oroboros.at/index.php/O2k-Publications: Exercise physiology;nutrition;life style High-resolution respirometry: Exercise physiology # Effects of Ultramarathon Running on Mitochondrial Function of Platelets and Oxidative Stress Parameters: A Pilot Study Florian Hoppel^{1,2*}, Elisa Calabria³, Dominik H. Pesta^{2,4,5,6}, Wilhelm Kantner-Rumplmair⁷, Erich Gnaiger^{1,8} and Martin Burtscher^{2*} Table 1: Flux control ratios and flux control efficiencies before competition (PRE), immediately after the race (POST) and 24 h after finishing (REC) | | PRE | After | | | | Change (%) | | |--------------------|-------------------|-------------------|-------------------|-------|----------------|------------|----------| | | | POST | REC | P | η ² | ΔPRE-POST | APRE-REC | | Flux control ratio |)5 | | | | | | | | R | 0.250 ± 0.061 | 0.291 ± 0.064 | 0.246 ± 0.049 | 0.226 | 0.257 | +16.34 | -1.84 | | PM _R | 0.327 ± 0.054 | 0.334 ± 0.067 | 0.334 ± 0.030 | 0.854 | 0.031 | +2.07 | +2.18 | | PML | 0.199 ± 0.029 | 0.256 ± 0.040 | 0.223 ± 0.047 | 0.036 | 0.566 | +28.37* | +11.82 | | PMp | 0.452 ± 0.051 | 0.484 ± 0.058 | 0.454 ± 0.087 | 0.789 | 0.046 | +7.01 | +0.43 | | PGM _P | 0.566 ± 0.053 | 0.611 ± 0.048 | 0.563 ± 0.080 | 0.384 | 0.174 | +7.93 | -0.46 | | Flux control effic | ciencies | | | | | | | | 1-PML/PMP | 0.556 ± 0.069 | 0.450 ± 0.095 | 0.501 ± 0.095 | 0.005 | 0.731 | -19.18* | -9.91 | | 1-PMp/PGMp | 0.202 ± 0.051 | 0.212 ± 0.085 | 0.199 ± 0.062 | 0.835 | 0.035 | + 5.25 | -1.25 | | 1-SE/PGMSp | 0.332 ± 0.033 | 0.350 ± 0.039 | 0.323 ± 0.055 | 0.846 | 0.041 | + 8.23 | +1.85 | Values are shown as means \pm SD, p values of ANOVA and η^2 (effect size) of both flux control ratios and flux control efficiencies PRE, POST and REC. Percental changes PRE-POST and PRE-REC are given. Drop-outs are not included in statistics. *Significant change in PRE-POST post hoc test, p = 0.05. ### **Table 2: Abbreviations** | JO_2 | Respiratory O ₂ flux | | |------------------------------------|--|--| | Mitochondrial fluxes | | | | R | JO ₂ of ROUTINE respiration depending on endogenous substrates | | | PM _R | JO ₂ of ROUTINE respiration in the presence of pyruvate and malate | | | PML | JO ₂ of LEAK respiration in the presence of pyruvate and malate | | | PM _P | JO ₂ of OXPHOS in the presence of pyruvate and malate | | | PGM _P | JO ₂ of OXPHOS in the presence of pyruvate, malate, glutamate | | | PGMS _P | JO ₂ of OXPHOS in the presence of pyruvate, malate, glutamate, succinate | | | S | JO ₂ of the CII-linked electron transfer pathway state | | | Flux control ratios | | | | R | R normalized by PGMSp | | | PM_R | PM _R normalized by PGMS _P | | | PM_L | PM _L normalized by PGMS _P | | | PM _P | PMp normalized by PGMSp | | | PGM_P | R normalized by PGMS _P | | | Flux control efficiencies | | | | 1-PM _L /PM _P | PML normalized by PMP. Step analysis of ADP titration | | | 1-PMp/PGMp | PMp normalized by PGMp, Step analysis of glutamate titration | | | 1-SE/PGMSP | S _E normalized by PGMS _P . Step analysis of Rotenone titration | | O2k-brief communicated by C Cecatto and L Tindle-Solomon Oroboros Instruments wiki.oroboros.at/index.php/O2k-Publications: Exercise physiology;nutrition;life style High-resolution respirometry: Exercise physiology ## Platelet mitochondrial function and race performance **Figure 1.** Regression (95 % confidence intervals) of change in PGM_P PRE-POST to race performance. Changes of FCRs of the NADH-linked OXPHOS state (substrates: PGM) PRE-POST to race time of the participants. # Correlation between respirometry parameters and markers of muscle injury **Figure 2.** Regression (95 % confidence intervals) of HRR parameters to changes in indirect markers for tissue damage. **(A)** FCRs of the LEAK state (PML) PRE to changes of creatine kinase (CK) PRE-POST. **(B)** FCRs of the NADH-linked OXPHOS state (substrates: PGM) to changes of lactate dehydrogenase (LDH) PRE-POST. Ultramarathon running induced an increase in LEAK O_2 flux of platelet (PLT) mitochondria. There were inverse correlations between race time and N-linked substrate state PRE-POST, and changes in CK and LDH levels were significantly correlated to PLT mitochondrial LEAK and N-linked respiration pre-race. Increase in the relative N-linked respiration in faster runners might suggest PLT Complex I as an indicator of physical fitness. The higher PLT LEAK pre-race and diminished increase of CK during the race may represent a prophylactic preconditioning. Furthermore, ultramarathon runners showed increased intrinsic uncoupling $(1-PM_L/PM_P)$ post-race compared to pre-race, which could be interpreted as protection against thromboembolism formation. Reference: Hoppel F, Calabria E, Pesta DH, Kantner-Rumplmair W, Gnaiger E, Burtscher M (2021) Effects of ultramarathon running on mitochondrial function of platelets and oxidative stress parameters: a pilot study. Front Physiol 12:632664. $\textbf{Text slightly modified based on the recommendations of the COST Action MitoEAGLE CA15203.} \underline{doi:10.26124/bec:2020-0001.v1}$ # O2k-brief communicated by C Cecatto and L Tindle-Solomon Oroboros Instruments