MitoEAGLE Conference and MC/WG Meeting – jointly organized by MiPsociety and MitoEAGLE
September 18-21 Jurmala, Latvia

Mitochondria-Targeted Antioxidants in Aging related functional changes in the heart and aorta: MitoTEMPO improves aged-cardiovascular performance

Yusuf Olgar¹, Ayseguł Toy Durak¹, Sinan Degirmenci¹, Belma Turan¹
¹Department of Biophysics Faculty of Medicine, Ankara University, Ankara, Turkey
Aging is accumulation of numerous modifications at different levels of the cardiovascular system, resulting in adverse remodelling of the heart and blood vessels.

Age-associated cardiac changes

- Impaired contractility
 - Decreased reserve
 - Norepinephrine dysregulation

- Abnormal rhythmicity
 - Increase in arrhythmia
 - Atrial fibrillation

- Vascular changes
 - Dilation of large arteries
 - Intimal media thickening
 - Increased stiffness
 - Endothelial dysfunction

- Vascular-ventricular mismatching
 - Decreased LV elastance
 - Diminished cardiac reserve

- Diastolic dysfunction
 - Decreased early diastolic filling
 - Increased late diastolic filling
 - Impaired ability of LV to relax

- LV hypertrophy
 - Increased wall thickness
 - Cardiomyocyte hypertrophy
 - Heart failure
Aging and Oxidative Stress

• In 1972 Denham Darman suggested that free radicals cause damage of mitochondria a key determinant of aging processes.

• Unbalanced ROS leading to cellular dysfunction

• Mitochondria the main source of ROS production

Therefore maintain mitochondrial function is good strategy to protect heart during aging.
Mitochondrial Targeted Antioxidants

• Decreasing mitochondrial ROS prevents myocardial dysfunction

• Low molecular weight antioxidants (α-Tocopherol, N-acetylcycteine) decreased mitochondrial damage *in vitro*, but their effects *in vivo* is limited

• Antioxidants can be targeted to mitochondria by several methods
 ➢ Hydrophobicity and positive charge
 ➢ Binding with high affinity to intramitochondrial structure
 ➢ Metabolic conversions by specific mitochondrial enzymes

MitoTEMPO conjugated with lipophylic cation TPMP and accumulates 100-500 fold in mitochondria
General findings of experimental animals (6- vs. 24- month)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Body Weight (g)</th>
<th>Heart Weight/Body Weight</th>
<th>Systolic pressure (mmHg)</th>
<th>Diastolic pressure (mmHg)</th>
<th>TAS (mM Trolox)</th>
<th>TOS (µM H₂O₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult-rats</td>
<td>330±11</td>
<td>0.43±0.02</td>
<td>119±2</td>
<td>75±0.6</td>
<td>1.05±0.11</td>
<td>0.25±0.06</td>
</tr>
<tr>
<td>(n=30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aged-rats</td>
<td>380±8.3*</td>
<td>0.52±0.02*</td>
<td>143±4*</td>
<td>83±1.1*</td>
<td>0.37±0.09*</td>
<td>0.77±0.22*</td>
</tr>
<tr>
<td>(n=35)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ECG intervals (s)

- **P-R**
 - Adult: [Graph]
 - Aged: [Graph]

- **R-R**
 - Adult: [Graph] *
 - Aged: [Graph] *

- **QT**
 - Adult: [Graph] *
 - Aged: [Graph] *

Heart Rate (beat/min)

- Adult: [Graph] *
- Aged: [Graph] *
Mitotempo treatment reduces ROS level in senescent cardiomyocytes

mitoTempo: 1 µM- 1-Hour
Mitotempo restores cytosolic Na\(^{+}\), Ca\(^{2+}\) and Zn\(^{2+}\) levels in senescent cardiomyocytes

![Graphs showing the effects of Mitotempo on Na\(^{+}\), Ca\(^{2+}\) and Zn\(^{2+}\) levels in young, aged, and A+MitoT cardiomyocytes.](image)

- **Amplitude**
 - Young: 0.20 ± 0.05
 - Aged: 0.25 ± 0.06
 - A+MitoT: 0.30 ± 0.04

- **Basal**
 - Young: 0.05 ± 0.01
 - Aged: 0.10 ± 0.03
 - A+MitoT: 0.08 ± 0.02

- **Basal [Na\(^{+}\)]\(_i\)**
 - Young: 0.60 ± 0.10
 - Aged: 0.80 ± 0.15
 - A+MitoT: 0.70 ± 0.12

- **[Zn\(^{2+}\)]\(_i\)**
 - Young: 1.2 ± 0.3
 - Aged: 2.0 ± 0.5
 - A+MitoT: 1.5 ± 0.4

CARDIAC ACTION POTENTIAL

- **Inward Current**
- **Outward Current**
- **Rest**
- **Rising Phase**
- **Plateau**
- **Repolarization**
- **Ca\(^{2+}\)**
- **K\(^{+}\)**
- **Na\(^{+}\)**
Mitotempo improves Left Ventricular function in senescent cardiomyocytes

Langendorff perfusion

- LVEDP (%)
- Time to Peak (ms)
- Time to half relaxation (ms)
Mitotempo improves contraction-relaxation function of aortic rings in senescent cardiomyocytes

\[\text{Phe} (\mu M) \]
\[0.1 \ 0.5 \ 1 \ 5 \ 10 \ 50 \ 100 \]
\[\text{Contraction} (\%) \]
\[-7.0 \ -6.5 \ -6.0 \ -5.5 \ -5.0 \ -4.5 \ -4.0 \]
\[\text{Log}[\text{Phe}] \]
\[\text{Adult} \quad \text{Aged} \quad \text{Adult+MitoT} \quad \text{Aged+MitoT} \]

\[\text{Ach} (\mu M) \]
\[0.1 \ 0.5 \ 1 \ 5 \ 10 \ 50 \ 100 \]
\[\text{Relaxation} (\%) \]
\[-7.0 \ -6.5 \ -6.0 \ -5.5 \ -5.0 \ -4.5 \ -4.0 \]
\[\text{Log}[\text{Ach}] \]
TURAN’s Lab