Rodolphi 2017 Thesis
Rodolphi MS (2017) Efeitos da nandrolona e da ceftriaxona na homeostasia glutamatΓ©rgica: uma busca por mecanismos interativos entre astrΓ³citos e neurΓ΄nios envolvidos no comportamento agressivo. Dissertation p58. |
Β» Open Access
Rodolphi MS (2017) Dissertation
Abstract: Anabolic androgenic steroids (AAS) such as nandrolone decanoate (ND) are synthetic hormones derived from testosterone. It is known that one of the most important adverse effects of abusive administration of these steroids is the increase in aggressive behavior. Evidence indicates that high doses of AAS alter morphology and cause hyperactivation of glutamatergic synapses which correlates with an aggressive exacerbated phenotype. Physiologically, glutamate is considered the main excitatory neurotransmitter in the mammalian brain. At high glutamate levels, occurs neuronal hyperexcitability mainly through the ionotropic N-methyl-d-aspartate (NMDAr) type of glutamatergic receptors and, consequently, changes in mitochondrial metabolism. Existing transporters in astrocytes predominantly perform the termination of glutamatergic excitatory signaling. In this sense, the GLT-1 glutamate astrocytic transporter is responsible for more than 90% of glutamate removal from the synaptic cleft, contributing significantly to the maintenance of glutamatergic signaling homeostasis. Administration of the Ξ²-lactam antibiotic ceftriaxone (CEF) increases GLT-1 expression and decreases glutamatergic hyperexcitability, which could potentially counteract brain mechanisms associated to increased aggressive phenotype mediated by nandrolone decanoate (ND). However, a possible molecular and behavioral interaction has not yet been explored in context. Thus, the primary objective of this work was to investigate whether increased expression of the GLT-1 astrocyte transporter modulates the glutamatergic mechanisms involved in ND-induced aggressive phenotype, and mitochondrial activity. Sixty-day-old male CF-1 mice were divided into 4 groups: oil vehicle (VEH), nandrolone (ND), ceftriaxone (CEF) and nandrolone + ceftriaxone (ND / CEF). Nandrolone was injected subcutaneously (15mg / kg) for 19 days. Ceftriaxone (200mg / kg) or saline solution were administered intraperitoneally for 5 days. After the last injection, the latency for the first attack and the number of attacks on the intruder test were evaluated. The animals were sacrificed after the test, and homogeinized cortex were used for immunoquantification of GLT-1 and phosphorylation of the NMDAr pNR2Bser1232 subunit. Mitochondrial activity was evaluated in total brain sinaptossomes. Glutamate levels were measured in the cerebrospinal fluid. Compared to the vehicle group, treatment with ND significantly decreased the expression of GLT-1, increased glutamate levels and expression of the pNR2Bser1232 which was mechanistically associated with an increase in the aggressive phenotype; decrease in the latency and increase in the number of attacks. Also, ND decreased mitochondrial respiratory control. Administration of CEF significantly increased GLT-1 expression and decreased glutamate levels relative to the ND group, whereas pNR2Bser1232 levels and aggressive phenotype were similar to the control group. In the ND / CEF group the expression of GLT-1 and pNR2Bser1232, glutamate levels and aggressive phenotype were significantly lower than in the ND group, and similar to the control group. Furthermore, CEF was able to attenuate the alteration in the mitochondrial respiratory control caused by ND. Our results demonstrated that the levels of glutamate astrocytic transporter GLT-1 and pNR2Bser1232 are important mechanism behind the increased aggressive phenotype induced by ND, and decreased mitochondrial respiratory control. Also, this model reinforces the importance of glutamate levels and astrocytic molecular targets in the regulation of the aggressive phenotype. β’ Keywords: Androgenic anabolic steroids, Glutamate, Ceftriaxone, GLT-1, NMDAr, Mitochondria β’ Bioblast editor: Kandolf G β’ O2k-Network Lab: BR Porto Alegre Souza DOG
Labels: MiParea: Respiration, Pharmacology;toxicology
Organism: Mouse
Tissue;cell: Nervous system
Preparation: Homogenate
Coupling state: ROUTINE, OXPHOS
Pathway: S, CIV, ROX
HRR: Oxygraph-2k
2017-08