Sjoevall 2014 PLoS One

From Bioblast
Publications in the MiPMap
SjΓΆvall F, Morota S, Asander Frostner E, Hansson Magnus J, Elmer E (2014) Cytokine and nitric oxide levels in patients with sepsis - temporal evolvement and relation to platelet mitochondrial respiratory function. PLoS One 9:e97673.

Β» PMID: 24828117 Open Access

Sjoevall F, Morota S, Asander Frostner E, Hansson Magnus J, Elmer E (2014) PLoS One

Abstract: The levels of nitric oxide (NO) and various cytokines are known to be increased during sepsis. These signaling molecules could potentially act as regulators and underlie the enhancement of mitochondrial function described in the later phase of sepsis. Therefore, we investigated the correlation between observed changes in platelet mitochondrial respiration and a set of pro- and anti-inflammatory cytokines as well as NO plasma levels in patients with sepsis.

Platelet mitochondrial respiration and levels of TNFΞ±, MCP-1 (monocyte chemotactic protein-1), INFΞ³ (interferon-Ξ³), IL-1Ξ², IL-4, IL-5, IL-6, IL-8, IL-10 and IL-17 and NO were analyzed in 38 patients with severe sepsis or septic shock at three time points during one week following admission to the ICU. Citrate synthase, mitochondrial DNA and cytochrome c were measured as markers of cellular mitochondrial content. All mitochondrial respiratory states increased over the week analyzed (p<0.001). IL-8 levels correlated with maximal mitochondrial respiration on day 6-7 (p = 0.02, r2 = 0.22) and was also higher in non-survivors compared to survivors on day 3-4 and day 6-7 (p = 0.03 respectively). Neither NO nor any of the other cytokines measured correlated with respiration or mortality. Cytochrome c levels were decreased at day 1-2 by 24Β±5% (p = 0.03) and returned towards values of the controls at the last two time points. Citrate synthase activity and mitochondrial DNA levels were similar to controls and remained constant throughout the week.

Out of ten analyzed cytokines and nitric oxide, IL-8 correlated with the observed increase in mitochondrial respiration. This suggests that cytokines as well as NO do not play a prominent role in the regulation of platelet mitochondrial respiration in sepsis. Further, the respiratory increase was not accompanied by an increase in markers of mitochondrial content, suggesting a possible role for post-translational enhancement of mitochondrial respiration rather than augmented mitochondrial mass.

β€’ O2k-Network Lab: SE Lund Elmer E

Labels: MiParea: Respiration, mt-Medicine, Patients  Pathology: Sepsis 

Organism: Human  Tissue;cell: Blood cells, Platelet  Preparation: Permeabilized cells 

Coupling state: LEAK, OXPHOS, ET  Pathway: N, S, CIV, NS, ROX  HRR: Oxygraph-2k 

JP, SE, MitoEAGLE blood cells data, MitoFit 2021 PLT 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.