Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Smith 2022 J Pineal Res

From Bioblast
Publications in the MiPMap
Smith KLM, Swiderska A, Lock MC, Graham L, Iswari W, Choudhary T, Thomas D, Kowash HM, Desforges M, Cottrell EC, Trafford AW, Giussani DA, Galli GLJ (2022) Chronic developmental hypoxia alters mitochondrial oxidative capacity and reactive oxygen species production in the fetal rat heart in a sex-dependent manner. https://doi.org/10.1111/jpi.12821

ยป J Pineal Res 73:e12821. PMID: 35941749 Open Access

Smith Kerri LM, Swiderska Agnieszka, Lock Mitchell C, Graham Lucia, Iswari Wulan, Choudhary Tashi, Thomas Donna, Kowash Hager M, Desforges Michelle, Cottrell Elizabeth C, Trafford Andrew W, Giussani Dino A, Galli Gina LJ (2022) J Pineal Res

Abstract: Insufficient oxygen supply (hypoxia) during fetal development leads to cardiac remodeling and a predisposition to cardiovascular disease in later life. Previous work has shown hypoxia causes oxidative stress in the fetal heart and alters the activity and expression of mitochondrial proteins in a sex-dependent manner. However, the functional effects of these modifications on mitochondrial respiration remain unknown. Furthermore, while maternal antioxidant treatments are emerging as a promising new strategy to protect the hypoxic fetus, whether these treatments convey similar protection to cardiac mitochondria in the male or female fetus has not been investigated. Therefore, using an established rat model, we measured the sex-dependent effects of gestational hypoxia and maternal melatonin treatment on fetal cardiac mitochondrial respiration, reactive oxygen species (ROS) production, and lipid peroxidation. Pregnant Wistar rats were subjected to normoxia or hypoxia (13% oxygen) during gestational days (GDs) 6-20 (term ~22 days) with or without melatonin treatment (5 ยตg/ml in maternal drinking water). On GD 20, mitochondrial aerobic respiration and H2O2 production were measured in fetal heart tissue, together with lipid peroxidation and citrate synthase (CS) activity. Gestational hypoxia reduced maternal body weight gain (p < .01) and increased placental weight (p < .05) but had no effect on fetal weight or litter size. Cardiac mitochondria from male but not female fetuses of hypoxic pregnancy had reduced respiratory capacity at Complex II (CII) (p < .05), and an increase in H2O2 production/O2 consumption (p < .05) without any changes in lipid peroxidation. CS activity was also unchanged in both sexes. Despite maternal melatonin treatment increasing maternal and fetal plasma melatonin concentration (p < .001), melatonin treatment had no effect on any of the mitochondrial parameters investigated. To conclude, we show that gestational hypoxia leads to ROS generation from the mitochondrial electron transport chain and affects fetal cardiac mitochondrial respiration in a sex-dependent manner. We also show that maternal melatonin treatment had no effect on these relationships, which has implications for the development of future therapies for hypoxic pregnancies. โ€ข Keywords: ROS, Fetal, Heart, Hypoxia, Melatonin, Metabolism, Mitochondria โ€ข Bioblast editor: Plangger M โ€ข O2k-Network Lab: UK Manchester Desforges M, UK Manchester Galli GL


Labels: MiParea: Respiration, Developmental biology 

Stress:Hypoxia  Organism: Rat  Tissue;cell: Heart  Preparation: Homogenate 


Coupling state: LEAK, OXPHOS, ET  Pathway: N, S, CIV, NS, ROX  HRR: Oxygraph-2k, O2k-Fluorometer 

2022-08, AmR