Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

White 2017 Sci Rep

From Bioblast
Publications in the MiPMap
White SH, Warren LK, Li C, Wohlgemuth SE (2017) Submaximal exercise training improves mitochondrial efficiency in the gluteus medius but not in the triceps brachii of young equine athletes. Sci Rep 7:14389.

Β» PMID: 29085004 Open Access

White Sarah Haverty, Warren LK, Li C, Wohlgemuth SE (2017) Sci Rep

Abstract: We tested the hypothesis that, similar to humans and rodents, exercise training would enhance mitochondrial (Mt) biogenesis and function in skeletal muscle of young horses. Twenty-four Quarter Horse yearlings were randomly assigned to either submaximal exercise training or no forced exercise (untrained). Biopsies were collected from the gluteus medius and triceps brachii before and after 9 wk of treatment. Citrate synthase activity was lower (P < 0.0001) and cytochrome c oxidase activity per Mt unit was higher (P < 0.0001) in gluteus compared to triceps, but neither changed over the trial period. From wk 0 to 9, intrinsic Mt respiration (PCI, PCI+II; P = 0.008) and electron transport capacity (ECI+II; P = 0.01) increased, and LEAK-related flux control factor (FCFL; P = 0.02) decreased in both muscles. After 9 wk of training, gluteus muscle exhibited higher (P < 0.05) intrinsic PCI, PCI+II, ECI+II, and FCFCI and FCFCI+II, and lower FCFL(P = 0.0002). Mitochondrial content did not change from wk 0 to 9, and also not in response to submaximal exercise training. Improvements in Mt function were most directly related to ongoing growth of horses independent of muscle group, and training further enhanced Mt function in the gluteus medius.

β€’ Bioblast editor: Kandolf G β€’ O2k-Network Lab: US FL Gainesville Wohlgemuth SE, US TX College Station White SH

Labels: MiParea: Respiration, Exercise physiology;nutrition;life style 

Organism: Horse  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue 

Coupling state: LEAK, OXPHOS, ET  Pathway: N, NS, ROX  HRR: Oxygraph-2k