Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Anderson 2009 J Am Coll Cardiol"

From Bioblast
Line 7: Line 7:
Results Mitochondria in atrial tissue of type 2 diabetic individuals show a sharply decreased capacity for glutamate and fatty acid-supported respiration, in addition to an increased content of myocardial triglycerides, as compared to nondiabetic patients. Furthermore, diabetic patients show an increased mitochondrial H<sub>2</sub>O<sub>2</sub> emission during oxidation of carbohydrate- and lipid-based substrates, depleted glutathione, and evidence of persistent oxidative stress in their atrial tissue.
Results Mitochondria in atrial tissue of type 2 diabetic individuals show a sharply decreased capacity for glutamate and fatty acid-supported respiration, in addition to an increased content of myocardial triglycerides, as compared to nondiabetic patients. Furthermore, diabetic patients show an increased mitochondrial H<sub>2</sub>O<sub>2</sub> emission during oxidation of carbohydrate- and lipid-based substrates, depleted glutathione, and evidence of persistent oxidative stress in their atrial tissue.
Conclusions These findings are the first to directly investigate the effects of type 2 diabetes on a panoply of mitochondrial functions in the human myocardium using cellular and molecular approaches, and they show that mitochondria in diabetic human hearts have specific impairments in maximal capacity to oxidize fatty acids and glutamate, yet increased mitochondrial H<sub>2</sub>O<sub>2</sub> emission, providing insight into the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of heart failure in diabetic patients.
Conclusions These findings are the first to directly investigate the effects of type 2 diabetes on a panoply of mitochondrial functions in the human myocardium using cellular and molecular approaches, and they show that mitochondria in diabetic human hearts have specific impairments in maximal capacity to oxidize fatty acids and glutamate, yet increased mitochondrial H<sub>2</sub>O<sub>2</sub> emission, providing insight into the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of heart failure in diabetic patients.
|keywords=Diabetic cardiomyopathy, Permeabilized muscle fiber from human atrial appendage biopsy, Permanent oxidative stresss,  ROS production, HNE (hydroxynonenal)- and 3-nitrotyrosine–modified proteins
|keywords=Diabetic cardiomyopathy, Permeabilized muscle fiber from human atrial appendage biopsy, Permanent oxidative stresss,  ROS production, HNE (hydroxynonenal)- and 3-nitrotyrosine–modified proteins, fatty acids oxidation, gluthatione
|info=[http://www.ncbi.nlm.nih.gov/pubmed/19892241 PMID: 19892241]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/19892241 PMID: 19892241]
}}
}}

Revision as of 14:16, 16 September 2010

Publications in the MiPMap
Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD (2009) Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J. Am. Coll. Cardiol. 54: 1891-1898.

» PMID: 19892241

Anderson EJ, Kypson AP, Rodriguez E, Anderson CA, Lehr EJ, Neufer PD (2009) J. Am. Coll. Cardiol.

Abstract: Objectives The aim of this study was to determine the impact of diabetes on oxidant balance and mitochondrial metabolism of carbohydrate- and lipid-based substrates in myocardium of type 2 diabetic patients. Background Heart failure represents a major cause of death among diabetic patients. It has been proposed that derangements in cardiac metabolism and oxidative stress may underlie the progression of this comorbidity, but scarce evidence exists in support of this mechanism in humans. Methods Mitochondrial oxygen (O2) consumption and hydrogen peroxide (H2O2) emission were measured in permeabilized myofibers prepared from samples of the right atrial appendage obtained from nondiabetic (n=13) and diabetic (n=11) patients undergoing nonemergent coronary artery bypass graft surgery. Results Mitochondria in atrial tissue of type 2 diabetic individuals show a sharply decreased capacity for glutamate and fatty acid-supported respiration, in addition to an increased content of myocardial triglycerides, as compared to nondiabetic patients. Furthermore, diabetic patients show an increased mitochondrial H2O2 emission during oxidation of carbohydrate- and lipid-based substrates, depleted glutathione, and evidence of persistent oxidative stress in their atrial tissue. Conclusions These findings are the first to directly investigate the effects of type 2 diabetes on a panoply of mitochondrial functions in the human myocardium using cellular and molecular approaches, and they show that mitochondria in diabetic human hearts have specific impairments in maximal capacity to oxidize fatty acids and glutamate, yet increased mitochondrial H2O2 emission, providing insight into the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of heart failure in diabetic patients. Keywords: Diabetic cardiomyopathy, Permeabilized muscle fiber from human atrial appendage biopsy, Permanent oxidative stresss, ROS production, HNE (hydroxynonenal)- and 3-nitrotyrosine–modified proteins, fatty acids oxidation, gluthatione


Labels:

Stress:RONS; Oxidative Stress"RONS; Oxidative Stress" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property., Mitochondrial Disease; Degenerative Disease and Defect"Mitochondrial Disease; Degenerative Disease and Defect" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property., Aging; Senescence"Aging; Senescence" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Human  Tissue;cell: Cardiac Muscle"Cardiac Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Permeabilized Cell or Tissue; Homogenate"Permeabilized Cell or Tissue; Homogenate" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Aerobic and Anaerobic Metabolism"Aerobic and Anaerobic Metabolism" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Substrate; Glucose; TCA Cycle"Substrate; Glucose; TCA Cycle" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Fatty Acid"Fatty Acid" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k