Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Bellance 2009 Int J Biochem Cell Biol"

From Bioblast
Line 15: Line 15:
|preparations=Intact Organ, Intact cells
|preparations=Intact Organ, Intact cells
|injuries=Cancer; Apoptosis; Cytochrome c, Genetic Defect; Knockdown; Overexpression
|injuries=Cancer; Apoptosis; Cytochrome c, Genetic Defect; Knockdown; Overexpression
|topics=ATP; ADP; AMP; PCr, Mitochondrial Biogenesis; Mitochondrial Density, Substrate; Glucose; TCA Cycle
|topics=ATP; ADP; AMP; PCr, mt-Biogenesis; mt-density, Substrate; Glucose; TCA Cycle
|couplingstates=OXPHOS
|couplingstates=OXPHOS
|kinetics=ADP; Pi, Reduced Substrate; Cytochrome c
|kinetics=ADP; Pi, Reduced Substrate; Cytochrome c

Revision as of 10:01, 9 August 2013

Publications in the MiPMap
Bellance N, Benard G, Furt F, Begueret H, Smolková K, Passerieux E, Delage JP, Baste JM, Moreau P, Rossignol R (2009) Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity. Int J Biochem Cell Biol 41: 2566-2577.

» PMID: 19712747

Bellance N, Benard G, Furt F, Begueret H, Smolkova K, Passerieux E, Delage JP, Baste JM, Moreau P, Rossignol R (2009) Int J Biochem Cell Biol

Abstract: Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1α (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy. Keywords: Lung tumors, Bioenergetics, Mitochondria, Oxidative phosphorylation

O2k-Network Lab: CZ_Prague_Jezek P, FR_Bordeaux_Rossignol R


Labels:

Stress:Cancer; Apoptosis; Cytochrome c"Cancer; Apoptosis; Cytochrome c" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property., Genetic Defect; Knockdown; Overexpression"Genetic Defect; Knockdown; Overexpression" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Human 

Preparation: Intact Organ"Intact Organ" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Intact cells 

Regulation: ATP; ADP; AMP; PCr"ATP; ADP; AMP; PCr" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., mt-Biogenesis; mt-density"mt-Biogenesis; mt-density" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Substrate; Glucose; TCA Cycle"Substrate; Glucose; TCA Cycle" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property.  Coupling state: OXPHOS 

HRR: Oxygraph-2k