Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Gram 2014 Exp Gerontol"

From Bioblast
Β 
(5 intermediate revisions by 4 users not shown)
Line 6: Line 6:
|journal=Exp Gerontol
|journal=Exp Gerontol
|abstract=Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23Β±1years) and 15 elderly (68Β±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mtHSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity, the respiratory differences with immobilization and training disappeared. In conclusion, aging is not associated with a decrease in muscle respiratory capacity in spite of lower complexes I-V and mtHSP70 protein content. Furthermore, immobilization decreased and aerobic training increased the respiratory capacity and protein contents of complexes I-V, mtHSP70 and VDAC similarly in the two groups. This suggests that inactivity and training alter mitochondrial biogenesis equally in young and elderly men.
|abstract=Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23Β±1years) and 15 elderly (68Β±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mtHSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity, the respiratory differences with immobilization and training disappeared. In conclusion, aging is not associated with a decrease in muscle respiratory capacity in spite of lower complexes I-V and mtHSP70 protein content. Furthermore, immobilization decreased and aerobic training increased the respiratory capacity and protein contents of complexes I-V, mtHSP70 and VDAC similarly in the two groups. This suggests that inactivity and training alter mitochondrial biogenesis equally in young and elderly men.
|mipnetlab=DK Copenhagen Dela F, JP Sapporo Yokota T
|keywords=Aging, Disuse, Muscle oxidative capacity, Immobilization, Mitochondrial biogenesis
|mipnetlab=DK Copenhagen Dela F, JP Sapporo Yokota T, DK Copenhagen Larsen S
}}
}}
{{Labeling
{{Labeling
|area=Respiration, mt-Biogenesis;mt-density, Exercise physiology;nutrition;life style, mt-Medicine
|area=Respiration, mt-Biogenesis;mt-density, Exercise physiology;nutrition;life style, mt-Medicine
|diseases=Aging;senescence
|organism=Human
|organism=Human
|tissues=Skeletal muscle
|tissues=Skeletal muscle
|preparations=Permeabilized tissue
|preparations=Permeabilized tissue
|diseases=Aging; senescence
|couplingstates=LEAK, OXPHOS
|couplingstates=LEAK, OXPHOS, ETS
|pathways=N, NS, ROX
|substratestates=CI, CII, CI+II
|instruments=Oxygraph-2k
|instruments=Oxygraph-2k
|additional=Labels
|additional=BMI, VO2max, JP,
}}
}}

Latest revision as of 16:34, 25 February 2020

Publications in the MiPMap
Gram M, Vigelsoe A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, Dela F (2014) Two weeks of one-leg immobilization decreases skeletal muscle 2 respiratory capacity equally in young and elderly men. Exp Gerontol 58C:269-78.

Β» PMID:25193555

Gram M, Vigelsoe A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, Dela F (2014) Exp Gerontol

Abstract: Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23Β±1years) and 15 elderly (68Β±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mtHSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity, the respiratory differences with immobilization and training disappeared. In conclusion, aging is not associated with a decrease in muscle respiratory capacity in spite of lower complexes I-V and mtHSP70 protein content. Furthermore, immobilization decreased and aerobic training increased the respiratory capacity and protein contents of complexes I-V, mtHSP70 and VDAC similarly in the two groups. This suggests that inactivity and training alter mitochondrial biogenesis equally in young and elderly men. β€’ Keywords: Aging, Disuse, Muscle oxidative capacity, Immobilization, Mitochondrial biogenesis

β€’ O2k-Network Lab: DK Copenhagen Dela F, JP Sapporo Yokota T, DK Copenhagen Larsen S


Labels: MiParea: Respiration, mt-Biogenesis;mt-density, Exercise physiology;nutrition;life style, mt-Medicine  Pathology: Aging;senescence 

Organism: Human  Tissue;cell: Skeletal muscle  Preparation: Permeabilized tissue 


Coupling state: LEAK, OXPHOS  Pathway: N, NS, ROX  HRR: Oxygraph-2k 

BMI, VO2max, JP