Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Kuhnt 2007 Neurochem Res"

From Bioblast
Line 4: Line 4:
|year=2007
|year=2007
|journal=Neurochem. Res.
|journal=Neurochem. Res.
|abstract=The aim of the study was to determinate mitochondrial oxidative phosphorylation (OXPHOS) functions in rat rhabdomyosarcoma R1H (R1H) and rat skeletal muscles. For that purpose skinned fiber technique and multiple substrate inhibitor titration were adapted to tumor samples. In our animal tumor model (R1H) functional abnormalities of OXPHOS were found compared to skeletal muscles. In R1H the state 3 respiration of pyruvate + malate was decreased: 0.56 ± 0.28 nmol O2/mg/min versus 2.32 ± 1.19 nmol O2/mg/min, P < 0.001, whereas the state 3 respiration of succinate + rotenone was increased: 36 ± 14% versus 19 ± 11%, P < 0.001. In R1H the rotenone-insensitive respiration reached higher levels than the antimycin A-insensitive respiration, whereas in normal muscles the converse was observed. Additionally, the obvious difference between the CAT- and the antimycin A-independent respiration indicates an increased part of leak respiration in R1H. By now, the high feasibility of these techniques is appreciated for the investigation of muscles and prospectively for tumors, too.
|abstract=The aim of the study was to determinate mitochondrial oxidative phosphorylation (OXPHOS) functions in rat rhabdomyosarcoma R1H (R1H) and rat skeletal muscles. For that purpose skinned fiber technique and multiple substrate inhibitor titration were adapted to tumor samples. In our animal tumor model (R1H) functional abnormalities of OXPHOS were found compared to skeletal muscles. In R1H the state 3 respiration of pyruvate + malate was decreased: 0.56 ± 0.28 nmol O<sub>2</sub>/mg/min versus 2.32 ± 1.19 nmol O<sub>2</sub>/mg/min, P < 0.001, whereas the state 3 respiration of succinate + rotenone was increased: 36 ± 14% versus 19 ± 11%, P < 0.001. In R1H the rotenone-insensitive respiration reached higher levels than the antimycin A-insensitive respiration, whereas in normal muscles the converse was observed. Additionally, the obvious difference between the CAT- and the antimycin A-independent respiration indicates an increased part of leak respiration in R1H. By now, the high feasibility of these techniques is appreciated for the investigation of muscles and prospectively for tumors, too.
|keywords=Mitochondria, OXPHOS functions, Skinned fiber technique, High-resolution respirometry,  Multiple substrate inhibitor titration, Rat rhabdomyosarcoma R1H
|keywords=Mitochondria, OXPHOS functions, Skinned fiber technique, High-resolution respirometry,  Multiple substrate inhibitor titration, Rat rhabdomyosarcoma R1H
|info=[http://www.ncbi.nlm.nih.gov/pubmed/17273927 PMID: 17273927 ]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/17273927 PMID: 17273927 ]

Revision as of 13:52, 20 October 2010

Publications in the MiPMap
Kuhnt T, Pelz T, Qu X, Haensgen G, Dunst J, Gellerich F (2007) Mitochondrial OXPHOS functions in R1H rhabdomyosarcoma and skeletal muscles of the rat. Neurochem Res 32:973–980.

» PMID: 17273927

Kuhnt T, Pelz T, Qu X, Haensgen G, Dunst J, Gellerich F (2007) Neurochem. Res.

Abstract: The aim of the study was to determinate mitochondrial oxidative phosphorylation (OXPHOS) functions in rat rhabdomyosarcoma R1H (R1H) and rat skeletal muscles. For that purpose skinned fiber technique and multiple substrate inhibitor titration were adapted to tumor samples. In our animal tumor model (R1H) functional abnormalities of OXPHOS were found compared to skeletal muscles. In R1H the state 3 respiration of pyruvate + malate was decreased: 0.56 ± 0.28 nmol O2/mg/min versus 2.32 ± 1.19 nmol O2/mg/min, P < 0.001, whereas the state 3 respiration of succinate + rotenone was increased: 36 ± 14% versus 19 ± 11%, P < 0.001. In R1H the rotenone-insensitive respiration reached higher levels than the antimycin A-insensitive respiration, whereas in normal muscles the converse was observed. Additionally, the obvious difference between the CAT- and the antimycin A-independent respiration indicates an increased part of leak respiration in R1H. By now, the high feasibility of these techniques is appreciated for the investigation of muscles and prospectively for tumors, too. Keywords: Mitochondria, OXPHOS functions, Skinned fiber technique, High-resolution respirometry, Multiple substrate inhibitor titration, Rat rhabdomyosarcoma R1H


Labels:

Stress:Cancer; Apoptosis; Cytochrome c"Cancer; Apoptosis; Cytochrome c" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property., Genetic Defect; Knockdown; Overexpression"Genetic Defect; Knockdown; Overexpression" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Rat  Tissue;cell: Skeletal Muscle"Skeletal Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Permeabilized Cell or Tissue; Homogenate"Permeabilized Cell or Tissue; Homogenate" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property. 

Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Substrate; Glucose; TCA Cycle"Substrate; Glucose; TCA Cycle" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k