Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Meszaros 2018 EBEC2018

From Bioblast
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Tissue- and substrate-specific patterns in the oxygen kinetics of mitochondrial respiration.

Link: EBEC2018

Meszaros AT, Haider M, Gnaiger E (2018)

Event: EBEC2018

In most tissues mitochondria (mt) respire in a low oxygen (O2) environment, where intracellular partial O2 pressures (pO2) may exert control over OXPHOS. It is well established that the affinity of cytochrome c oxidase (CIV) for O2 decreases with increasing enzyme turnover [1] and that mt p50 (pO2 at half-maximum O2 flux, JO2) is a function of coupling and JO2 [2]. In our study of tissue-specific O2 kinetics, we investigated the influence of pathway and coupling control on mt p50 with various fuel substrates in OXPHOS-, LEAK- and ET-states in mt isolated from mouse brain, heart and liver.

Isolated mt were incubated in Oroboros O2k High-Resolution FluoRespirometers. Kinetic data was obtained during aerobic-anaerobic transitions with high time-resolution. p50 values were calculated using the O2kinetics software for automatic calibration and correction of O2 signals, data processing and curve fitting.

p50 ranged from 0.006 to 0.07 kPa for NADH-linked LEAK respiration with glutamate&malate (GM), and NADH-&succinate-linked OXPHOS capacity with GM and pyruvate, in agreement with and extending the literature. p50 increased with an increase from 25 °C to 37 °C. In heart and liver, p50 was higher in OXPHOS- than in LEAK-states, increasing proportionally with CIV turnover. Surprisingly, however, brain mt did not follow this kinetic pattern in S-linked coupling control states, irrespective of rotenone addition, with p50 values in LEAK up to 2-times higher than in OXPHOS, despite a 3-4 fold decline of JO2. Further studies are underway to elucidate the underlying mechanisms, and to address the question if mouse brain is an exception or representative of a general pattern.


Bioblast editor: Kandolf G, Meszaros AT O2k-Network Lab: AT Innsbruck Oroboros


Affiliations

Mészáros A(1,2), Haider M(3), Gnaiger E(1,4)

  1. Oroboros Instruments, Innsbruck, Austria
  2. Inst Surgical Research, Univ Szeged, Hungary
  3. Steinhauser & Haider Technology Consulting OG, Innsbruck, Austria
  4. D. Swarovski Research Lab, Dept Visceral, Transplant Thoracic Surgery, Medical Univ Innsbruck, Austria. - [email protected]

References

  1. Krab K, Kempe H, Wikström M (2011) Explaining the enigmatic Km for oxygen in cytochrome c oxidase: A kinetic model. Biochim Biophys Acta 1807:348–58
  2. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R (1995) Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr 27:583-96.


Labels: MiParea: Respiration 


Organism: Mouse  Tissue;cell: Heart, Nervous system, Liver  Preparation: Isolated mitochondria  Enzyme: Complex IV;cytochrome c oxidase  Regulation: Oxygen kinetics  Coupling state: LEAK, OXPHOS, ET  Pathway:HRR: Oxygraph-2k  Event: Oral