Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Metformin"

From Bioblast
(4 intermediate revisions by the same user not shown)
Line 6: Line 6:


== Metformin and mitObesity ==
== Metformin and mitObesity ==
  ''Work in progress'' by [[Gnaiger E]] 2020-01-20 linked to a preprint in preparation on [[body mass excess |'''BME''']] and [[:Category:BME and mitObesity |'''mitObesity''']].
  ''Work in progress'' by [[Gnaiger E]] 2020-02-10 linked to a preprint in preparation on [[body mass excess |'''BME''']] and [[:Category:BME and mitObesity |'''mitObesity''']].


:::# Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, WaldhĂ€usl W, FĂŒrnsinn C (2004) Thiazolidinediones, like metformin, inhibit respiratory Complex I: a common mechanism contributing to their antidiabetic actions?. Diabetes 53:1052-9. - [[Brunmair 2004 Diabetes |»Bioblast link«]]
== References: Metformin ==
{{#ask:[[Category:Publications]] [[Additional label::Metformin]]
|?Was published in year=Year
|?Has title=Reference
|?Mammal and model=Organism
|?Tissue and cell=Tissue;cell
|format=broadtable
|limit=5000
|offset=0
|sort=Was published in year
|order=descending
}}
 
{{#ask:[[Category:Abstracts]] [[Additional label::Metformin]]
|?Was submitted in year=Year
|?Has title=Reference
|?Mammal and model=Organism
|?Tissue and cell=Tissue;cell
|format=broadtable
|limit=5000
|offset=0
|sort=Was submitted in year
|order=descending
}}
:::# Dantas-Ferreira RF, Raingard H, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Challet E (2018) Melatonin potentiates the effects of metformin on glucose metabolism and food intake in high-fat-fed rats. Endocrinol Diabetes Metab 1:e00039. - https://www.ncbi.nlm.nih.gov/pubmed/30815567
:::# Dantas-Ferreira RF, Raingard H, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Challet E (2018) Melatonin potentiates the effects of metformin on glucose metabolism and food intake in high-fat-fed rats. Endocrinol Diabetes Metab 1:e00039. - https://www.ncbi.nlm.nih.gov/pubmed/30815567
:::# Alshahrani A, AlDubayee M, Zahra M, Alsebayel FM, Alammari N, Alsudairy F, Almajed M, Aljada A (2019) Differential expression of human N-alpha-acetyltransferase 40 (hNAA40), nicotinamide phosphoribosyltransferase (NAMPT) and Sirtuin-1 (SIRT-1) pathway in obesity and T2DM: modulation by metformin and macronutrient intake. Diabetes Metab Syndr Obes 12:2765-74. - https://www.ncbi.nlm.nih.gov/pubmed/31920356
:::# Alshahrani A, AlDubayee M, Zahra M, Alsebayel FM, Alammari N, Alsudairy F, Almajed M, Aljada A (2019) Differential expression of human N-alpha-acetyltransferase 40 (hNAA40), nicotinamide phosphoribosyltransferase (NAMPT) and Sirtuin-1 (SIRT-1) pathway in obesity and T2DM: modulation by metformin and macronutrient intake. Diabetes Metab Syndr Obes 12:2765-74. - https://www.ncbi.nlm.nih.gov/pubmed/31920356
Line 26: Line 49:
:::# Saraei P, Asadi I, Kakar MA, Moradi-Kor N (2019) The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res 11:3295-313. - https://www.ncbi.nlm.nih.gov/pubmed/31114366  
:::# Saraei P, Asadi I, Kakar MA, Moradi-Kor N (2019) The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res 11:3295-313. - https://www.ncbi.nlm.nih.gov/pubmed/31114366  
:::# Higgins L, Palee S, Chattipakorn SC, Chattipakorn N (2019) Effects of metformin on the heart with ischaemia-reperfusion injury: Evidence of its benefits from in vitro, in vivo and clinical reports. Eur J Pharmacol 858:172489. - https://www.sciencedirect.com/science/article/pii/S0014299919304418
:::# Higgins L, Palee S, Chattipakorn SC, Chattipakorn N (2019) Effects of metformin on the heart with ischaemia-reperfusion injury: Evidence of its benefits from in vitro, in vivo and clinical reports. Eur J Pharmacol 858:172489. - https://www.sciencedirect.com/science/article/pii/S0014299919304418
:::# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654524/
:::# https://www.ncbi.nlm.nih.gov/pubmed/30151735
:::# https://journals.lww.com/jhypertension/Abstract/2017/01000/Effects_of_metformin_on_blood_pressure_in.4.aspx
:::# https://pubmed.ncbi.nlm.nih.gov/28208582-nutrients-in-energy-and-one-carbon-metabolism-learning-from-metformin-users/?from_term=Obesity+and+comorbidities+and+mitochondria&from_page=4&from_pos=1


{{MitoPedia: mitObesity drugs}}


 
{{MitoPedia concepts
[[Category:BME and mitObesity]]
|mitopedia concept=MiP concept
}}
{{Labeling
|additional=MitoPedia:mitObesity drug
}}

Revision as of 02:26, 12 February 2020


high-resolution terminology - matching measurements at high-resolution


Metformin

Description

Metformin is mainly known as an important antidiabetic drug which is effective, however, in a wide spectrum of degenerative diseases. It is an inhibitor of Complex I.


Reference: Brunmair 2004 Diabetes

Metformin and mitObesity

Work in progress by Gnaiger E 2020-02-10 linked to a preprint in preparation on BME and mitObesity.

References: Metformin

 YearReferenceOrganismTissue;cell
Siewiera 2022 Int J Mol Sci2022Siewiera K, Labieniec-Watala M, Kassassir H, Wolska N, Polak D, Watala C (2022) Potential role of mitochondria as modulators of blood platelet activation and reactivity in diabetes and effect of metformin on blood platelet bioenergetics and platelet activation. https://doi.org/10.3390/ijms23073666RatPlatelet
LaMoia 2022 Proc Natl Acad Sci U S A2022LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, HĂŒttemann M, Shulman GI (2022) Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc Natl Acad Sci U S A 119:e2122287119. https://doi.org/10.1073/pnas.2122287119
Zhao 2021 Trends Cancer2021Zhao H, Swanson KD, Zheng B (2021) Therapeutic repurposing of biguanides in cancer. Trends Cancer 7:714-30. https://doi.org/10.1016/j.trecan.2021.03.001
Machado 2019 MitoFit Preprint Arch EA2019Machado Ivo F, Teodoro JS, Palmeira CM, Rolo AP (2019) Interplay between metformin and miR-378a-3p in cells under hyperglycaemia. https://doi.org/10.26124/mitofit:ea19.MiPSchool.0008
Teh 2019 Mol Cancer Ther2019Teh JT, Zhu WL, Newgard CB, Casey PJ, Wang M (2019) Respiratory capacity and reserve predict cell sensitivity to mitochondria inhibitors: mechanism-based markers to identify metformin-responsive cancers. Mol Cancer Ther 18:693-705.Human
Mouse
Other cell lines
Ruegsegger 2019 JCI Insight2019Ruegsegger GN, Vanderboom PM, Dasari S, Klaus KA, Kabiraj P, McCarthy CB, Lucchinetti CF, Nair KS (2019) Exercise and metformin counteract altered mitochondrial function in the insulin-resistant brain. JCI Insight 4:130681.MouseNervous system
Gabandé-Rodríguez 2019 Cells2019Gabandé-Rodríguez E, M Gómez de Las Heras M, Mittelbrunn M (2019) Control of inflammation by calorie restriction mimetics: on the crossroad of autophagy and mitochondria. Cells 2019;9:E82.
Kenny 2019 Circ Res2019Kenny HC, Abel ED (2019) Heart failure in Type 2 Diabetes Mellitus. Circ Res 124:121–41.HumanHeart
Arnoux 2018 Elife2018Arnoux I, Willam M, Griesche N, Krummeich J, Watari H, Offermann N, Weber S, Narayan Dey P, Chen C, Monteiro O, Buettner S, Meyer K, Bano D, Radyushkin K, Langston R, Lambert JJ, Wanker E, Methner A, Krauss S, Schweiger S, Stroh A (2018) Metformin reverses early cortical network dysfunction and behavior changes in Huntington's disease. Elife 7:e38744.MouseNervous system
Piel 2018 Intensive Care Med Exp2018Piel S, Ehinger JK, Chamkha I, Frostner EÅ, Sjövall F, ElmĂ©r E, Hansson MJ (2018) Bioenergetic bypass using cell-permeable succinate, but not methylene blue, attenuates metformin-induced lactate production. Intensive Care Med Exp 6:22.HumanPlatelet
Blood cells
Konopka 2018 Aging Cell2018Konopka AR, Laurin JL, Schoenberg HM, Reid JJ, Castor WM, Wolff CA, Musci RV, Safairad OD, Linden MA, Biela LM, Bailey SM, Hamilton KL, Miller BF (2018) Metformin inhibits mitochondrial adaptations to aerobic exercise training in older adults. Aging Cell 18:e12880.HumanSkeletal muscle
Tai 2018 Acta Pharm Sin B2018Tai Y, Li L, Peng X, Zhu J, Mao X, Qin N, Ma M, Huo R, Bai Y, Dong D (2018) Mitochondrial uncoupler BAM15 inhibits artery constriction and potently activates AMPK in vascular smooth muscle cells. Acta Pharm Sin B 8:909-18.MouseEndothelial;epithelial;mesothelial cell
Machado-Neto 2018 Cell Death Dis2018Machado-Neto JA, Fenerich BA, Scopim-Ribeiro R, Eide CA, Coelho-Silva JL, Dechandt CRP, Fernandes JC, Rodrigues Alves APN, Scheucher PS, SimÔes BP, Alberici LC, de Figueiredo Pontes LL, Tognon CE, Druker BJ, Rego EM, Traina F (2018) Metformin exerts multitarget antileukemia activity in JAK2V617F-positive myeloproliferative neoplasms. Cell Death Dis 9:311.Human
Mouse
Other cell lines
Wilmanns 2018 Mol Metab2018Wilmanns JC, Pandey R, Hon O, Chandran A, Schilling JM, Forte E, Wu Q, Cagnone G, Bais P, Philip V, Coleman D, Kocalis H, Archer SK, Pearson JT, Ramialison M, Heineke J, Patel HH, Rosenthal NA, Furtado MB, Costa MW (2018) Metformin intervention prevents cardiac dysfunction in a murine model of adult congenital heart disease. Mol Metab 20:102-14.MouseHeart
Christensen 2018 Diabetes Metab Res Rev2018Christensen M, Schiffer TA, Gustafsson H, Krag SP, NĂžrregaard R, Palm F (2018) Metformin attenuates renal medullary hypoxia in diabetic nephropathy through uncoupling protein-2 inhibition. Diabetes Metab Res Rev 21:e3091.RatKidney
Rivas 2018 Am J Physiol Endocrinol Metab2018Rivas E, Herndon DN, Porter C, Meyer W, Suman OE. (2018) Short-term metformin and exercise training effects on strength, aerobic capacity, glycemic control, and mitochondrial function in children with burn injury.. Am J Physiol Endocrinol Metab. 314(3):E232-E240.HumanSkeletal muscle
Zhou 2018 Cell Death Dis2018Zhou C, Sun H, Zheng C, Gao J, Fu Q, Hu N, Shao X, Zhou Y, Xiong J, Nie K, Zhou H, Shen L, Fang H, Lyu J (2018) Oncogenic HSP60 regulates mitochondrial oxidative phosphorylation to support Erk1/2 activation during pancreatic cancer cell growth. Cell Death Dis 9:161.HumanIslet cell;pancreas;thymus
Other cell lines
Schommers 2017 Mol Metab2017Schommers P, Thurau A, Bultmann-Mellin I, Guschlbauer M, Klatt AR, Rozman J, Klingenspor M, de Angelis MH, Alber J, GrĂŒndemann D, Sterner-Kock A, Wiesner RJ (2017) Metformin causes a futile intestinal-hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Mol Metab 6:737-47.Mouse
Pecinova 2017 Oxid Med Cell Longev2017Pecinova A, Drahota Z, Kovalcikova J, Kovarova N, Pecina P, Alan L, Zima M, Houstek J, Mracek T (2017) Pleiotropic effects of biguanides on mitochondrial reactive oxygen species production. Oxid Med Cell Longev 7038603.RatFat
Wetzel 2017 Thesis2017Wetzel MD (2017) Mechanism of metformin action in dermal fibroblasts. PhD Thesis 125.HumanFibroblast
Villani 2016 Mol Metab2016Villani LA, Smith BK, Marcinko K, Ford RJ, Broadfield LA, Green AE, Houde VP, Muti P, Tsakiridis T, Steinberg GR (2016) The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol Metab 5:1048-56.HumanGenital
Cahova 2016 Am J Physiol Gastrointest Liver Physiol2016Cahova M, Palenickova E, Dankova H, Sticova E, Burian M, Drahota Z, Cervinkova Z, Kucera O, Gladkova C, Stopka P, Krizova J, Papackova Z, Oliyarnyk O, Kazdova L (2016) Metformin prevents ischemia reperfusion-induced oxidative stress in the fatty liver by attenuation of reactive oxygen species formation. Am J Physiol Gastrointest Liver Physiol 309:G100-11.RatLiver
Cheng 2016 Nat Immunol2016Cheng SC, Scicluna BP, Arts RJ, Gresnigt MS, Lachmandas E, Giamarellos-Bourboulis EJ, Kox M, Manjeri GR, Wagenaars JA, Cremer OL, Leentjens J, van der Meer AJ, van de Veerdonk FL, Bonten MJ, Schultz MJ, Willems PH, Pickkers P, Joosten LA, van der Poll T, Netea MG (2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 17:406-13.HumanBlood cells
Lymphocyte
Timmers 2016 Diabetes Care2016Timmers S, de Ligt M, Phielix E, van de Weijer T, Hansen J, Moonen-Kornips E, Schaart G, Kunz I, Hesselink MK, Schrauwen-Hinderling VB, Schrauwen P (2016) Resveratrol as add-on therapy in subjects with well-controlled type 2 diabetes: a randomized controlled trial. Diabetes Care 39:2211-17.HumanSkeletal muscle
Rajh 2016 PLOS ONE2016Rajh M, Dolinar K, MiĆĄ K, Pavlin M, Pirkmajer (2016) Medium renewal blocks antiproliferative effects of metformin in cultured MDA-MB-231 breast cancer cells. PLOS ONE 11:e0154747.HumanGenital
Other cell lines
Alcocer-Gomez 2016 Biochim Biophys Acta2016Alcocer-GĂłmez E, Garrido-Maraver J, BullĂłn P, MarĂ­n-Aguilar F, CotĂĄn D, CarriĂłn AM, Alvarez-Suarez JM, Giampieri F, SĂĄnchez-Alcazar JA, Battino M, Cordero MD (2016) Metformin and caloric restriction induce an AMPK-dependent restoration of mitochondrial dysfunction in fibroblasts from Fibromyalgia patient. Biochim Biophys Acta 1852:1257-67.MouseFibroblast
Cheng 2014 Science2014Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JH, Rao NA, Aghajanirefah A, Manjeri GR6, Li Y, Ifrim DC, Arts RJ, van der Meer BM, Deen PM, Logie C, O'Neill LA, Willems P, van de Veerdonk FL, van der Meer JW, Ng A, Joosten LA, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG (2014) mTOR- and HIF-1 α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345:1250684.HumanBlood cells
Other cell lines
Piel 2014 Acta Physiol (Oxf)2014Piel S, Ehinger JK, Elmér E, Hansson Magnus J (2014) Metformin induces lactate production in peripheral blood mononuclear cells and platelets through specific mitochondrial Complex I inhibition. Acta Physiol (Oxf) 213:171-80.HumanBlood cells
Other cell lines
Platelet
Drahota 2014 Physiol Res2014Drahota Z, Palenickova E, Endlicher R, Milerova M, Brejchova J, Vosahlikova M, Svoboda P, Kazdova L, Kalous M, Cervinkova Z, Cahova M (2014) Biguanides inhibit Complex I, II and IV of rat liver mitochondria and modify their functional properties. Physiol Res 63:1-11.RatLiver
Svendsen 2014 Thesis2014Svendsen PF (2014) Metabolic aspects of polycystic ovary syndrome and obesity. Thesis Copenhagen University Hospital:38 pp.Human
Wessels 2014 PLoS One2014Wessels B, Ciapaite J, van den Broek NMA, Nicolay K, Prompers JJ (2014) Metformin impairs mitochondrial function in skeletal muscle of both lean and diabetic rats in a dose-dependent manner. PLoS One 9:e100525.RatSkeletal muscle
Kristensen 2013 PLoS One2013Kristensen JM, Larsen S, Helge JW, Dela F, Wojtaszewski JFP (2013) Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice. PLoS One 8:e53533.MouseSkeletal muscle
Palenickova 2011 Physiol Res2011Palenickova E, Cahova M, Drahota Z, Kazdova L, Kalous M (2011) Inhibitory effect of metformin on oxidation of NADH-dependent substrates in rat liver homogenate. Physiol Res 60:835-9.RatLiver
Benes 2011 Clin Sci (Lond)2011Benes J, Kazdova L, Drahota Z, Houstek J, Medrikova D, Kopecky J, Kovarova N, Vrbacky M, Sedmera D, Strnad H, Kolar M, Petrak J, Benada O, Skaroupkova P, Cervenka L, Melenovsky V (2011) Effect of metformin therapy on cardiac function and survival in a volume-overload model of heart failure in rats. Clin Sci (Lond) 121:29-41.RatHeart
Kane 2010 Free Radic Biol Med2010Kane DA, Anderson EJ, Price III JW, Woodlief TL, Lin C-T, Bikman BT, Cortright RN, Neufer PD (2010) Metformin selectively attenuates mitochondrial H2O2 emission without affecting respiratory capacity in skeletal muscle of obese rats. Free Radic Biol Med 49:1082–7.RatSkeletal muscle
Morota 2009 Exp Neurol2009Morota S, MÄnsson R, Hansson Magnus J, Kasuya K, Shimazu M, Hasegawa E, Yanagi S, Omi A, Uchino H, Elmér E (2009) Evaluation of putative inhibitors of mitochondrial permeability transition for brain disorders-specificity vs. toxicity. Exp Neurol 218:353-62.HumanLiver
Canto 2009 Nature2009CantĂł AC, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056-60.MouseSkeletal muscle
Brunmair 2004 Diabetes2004Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, WaldhĂ€usl W, FĂŒrnsinn C (2004) Thiazolidinediones, like metformin, inhibit respiratory Complex I: a common mechanism contributing to their antidiabetic actions? Diabetes 53:1052-9.RatSkeletal muscle
Liver
El-Mir 2000 J Biol Chem2000El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain Complex I. J Biol Chem 275:223-8. https://doi.org/10.1074/jbc.275.1.223Rat
 YearReferenceOrganismTissue;cell
Jeremic 2019 MiP20192019
Marija Jeremic
Neurotoxic effect of extracellular alpha-synuclein can be alleviated by AMPK and autophagy.
HumanNeuroblastoma
Pavlovic 2019 MiP20192019
Barbara Cannon
Effects of therapeutic metformin concentration on mitochondria in muscle cells.
MouseSkeletal muscle
Avram 2019 MiP20192019
Vlad Avram
Cell-permeable succinate bypasses statin-induced decrease in mitochondrial ATP-generating respiration in human platelets.
HumanPlatelet
Avram 2018 MiP20182018
MiPsociety
Cell-permeable succinate bypasses statin-induced mitochondrial complex I inhibition in human platelets. Avram_Presentation
HumanPlatelet
Siewiera 2018 MiPschool Tromso E22018
Karolina Siewiera
Effect of metformin treatment on blood platelet bioenergetics and platelet function in STZ-diabetic and non-diabetic rats.
RatPlatelet
Konopka 2018 FASEB J2018Konopka AR, Castor WM, Reid J, Schoenberg H, Laurin J, Wolff C, Hamilton K, Miller B (2018) Metformin blunts exercise-induced improvements in skeletal muscle mitochondrial respiration independent of changes in mitochondrial biogenesis. FASEB J.HumanSkeletal muscle
Pecinova 2017 MiP20172017
Pecinova A
Targeting tumor cell proliferation by inhibition of mitochondrial metabolic pathways.
Siewiera 2017 Abstract MITOEAGLE Barcelona2017
COST Action MITOEAGLE
The effect of metformin on blood platelet bioenergetics and platelet function.
HumanBlood cells
Platelet
Forbes-Hernandez 2017 MiPschool Obergurgl2017
COST Action MitoEAGLE
The reduction of mitochondrial functionality by a strawberry extract: a mechanism that contributes to its lipid-lowering effect?
HumanLiver
Scatena 2017 MITOEAGLE Obergurgl2017
Roberto Scatena
Cancer stem cell differentiation induced by PPAR ligands. Which role for an inhibition of mitochondrial respiratory chain?
HumanLiver
Labieniec-Watala 2017 MiP20172017
Magda Labieniec-Watala
Lack of the effect of low metformin concentrations on the response of breast cancer cell mitochondria to radiotherapy under conditions of the in vitro experimental hyperglycemia. Labieniec-Watala_Presentation
HumanGenital
Scatena 2017 Abstract MITOEAGLE Barcelona2017
COST Action MITOEAGLE
Mitochondria and cancer stem cells in hepatocarcinoma. An illustrative example of a tangled methodological approach.
Liver
Brazdova 2017 MiP20172017
Brazdova Andrea
Pleiotropic effects of biguanides on mitochondrial reactive oxygen species production.
Fat
Kopitar-Jerala 2017 Abstract MITOEAGLE Barcelona2017
COST Action MITOEAGLE
Murphy 2016 Abstract FASEB J2016Metformin limits loss of mitochondrial respiration seen with doxorubicin treatment without affecting muscle function.MouseSkeletal muscle
Ehinger 2015 Abstract MiPschool London 20152015Cell-permeable mitochondrial complex II substrates – a new compound class for treatment of complex I-linked mitochondrial disease.HumanHeart
Blood cells
Fibroblast
Jana Prado 2014 Abstract MiP20142014Defining the role of mitochondrial electron transfer Complex I on the modulation of Ca2+ homeostasis: effects of metformin on cancer cell metabolism. Mitochondr Physiol Network 19.13.
  1. Dantas-Ferreira RF, Raingard H, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Challet E (2018) Melatonin potentiates the effects of metformin on glucose metabolism and food intake in high-fat-fed rats. Endocrinol Diabetes Metab 1:e00039. - https://www.ncbi.nlm.nih.gov/pubmed/30815567
  2. Alshahrani A, AlDubayee M, Zahra M, Alsebayel FM, Alammari N, Alsudairy F, Almajed M, Aljada A (2019) Differential expression of human N-alpha-acetyltransferase 40 (hNAA40), nicotinamide phosphoribosyltransferase (NAMPT) and Sirtuin-1 (SIRT-1) pathway in obesity and T2DM: modulation by metformin and macronutrient intake. Diabetes Metab Syndr Obes 12:2765-74. - https://www.ncbi.nlm.nih.gov/pubmed/31920356
  3. Sanches-Silva A, Testai L, Nabavi SF, Battino M, Devi KP, Tejada S, Sureda A, Xu S, Yousefi B, Majidinia M, Russo GL, Efferth T, Nabavi SM, Farzaei MH (2020) Therapeutic potential of polyphenols in cardiovascular diseases: regulation of mTOR signaling pathway. Pharmacol Res 2020 Jan 2:104626. - https://www.ncbi.nlm.nih.gov/pubmed/31904507
  4. Srivastava SB (2019) Is there a prescription to treat pediatric obesity? Am J Lifestyle Med 14:36-9. - https://www.ncbi.nlm.nih.gov/pubmed/31903078
  5. McCrimmon RJ, Catarig AM, Frias JP, Lausvig NL, le Roux CW, Thielke D, Lingvay I (2020) Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: a substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia 2020 Jan 2. doi: 10.1007/s00125-019-05065-8. - https://www.ncbi.nlm.nih.gov/pubmed/31897524
  6. Kothari S, Dhami-Shah H, Shah SR (2019) Antidiabetic drugs and statins in nonalcoholic fatty liver disease. J Clin Exp Hepatol 9:723-30. - https://www.ncbi.nlm.nih.gov/pubmed/31889754
  7. Hiluy JC, Nazar BP, Gonçalves WS, Coutinho W, Appolinario JC (2019) Effectiveness of pharmacologic interventions in the management of weight gain in patients with severe mental illness: a systematic review and meta-analysis. Prim Care Companion CNS Disord 21 pii: 19r02483. - https://www.ncbi.nlm.nih.gov/pubmed/31856432
  8. Crocker CL, Baumgarner BL, Kinsey ST (2019) ÎČ-guanidinopropionic acid and metformin differentially impact autophagy, mitochondria and cellular morphology in developing C2C12 muscle cells. J Muscle Res Cell Motil. 2019 Dec 13. doi: 10.1007/s10974-019-09568-0. - https://www.ncbi.nlm.nih.gov/pubmed/31836952
  9. Guo H, Kong W, Zhang L, Han J, Clark LH, Yin Y, Fang Z, Sun W, Wang J, Gilliam TP, Lee D, Makowski L, Zhou C, Bae-Jump VL (2019) Reversal of obesity-driven aggressiveness of endometrial cancer by metformin. Am J Cancer Res 9:2170-93. - https://www.ncbi.nlm.nih.gov/pubmed/31720081
  10. Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, O'Rourke B, He L (2019) Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep 29:1511-23.e5. - https://www.ncbi.nlm.nih.gov/pubmed/31693892
  11. MacNeil LT, Schertzer JD, Steinberg GR (2020) Bacteria transmit metformin-associated lifespan extension. Nat Rev Endocrinol 16:9-10. - https://www.ncbi.nlm.nih.gov/pubmed/31645681
  12. El-Sayed SM, Ibrahim HM (2019) Effect of high-fat diet-induced obesity on thyroid gland structure in female rats and the possible ameliorating effect of metformin therapy. Folia Morphol (Warsz). 2019 Sep 6. doi: 10.5603/FM.a2019.0100. - https://www.ncbi.nlm.nih.gov/pubmed/31489607
  13. Hartman SJ, Nelson SH, Marinac CR, Natarajan L, Parker BA, Patterson RE (2019) The effects of weight loss and metformin on cognition among breast cancer survivors: Evidence from the Reach for Health study. Psychooncology 28:1640-46. - https://www.ncbi.nlm.nih.gov/pubmed/31140202
  14. Rotermund C, Machetanz G, Fitzgerald JC (2018) The therapeutic potential of metformin in neurodegenerative diseases. Front Endocrinol (Lausanne) 9:400. - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060268/
  15. Glossmann HH, Lutz OMD (2019) Metformin and aging: a review. Gerontology 65:581-90. - https://www.karger.com/Article/FullText/502257#
  16. Saraei P, Asadi I, Kakar MA, Moradi-Kor N (2019) The beneficial effects of metformin on cancer prevention and therapy: a comprehensive review of recent advances. Cancer Manag Res 11:3295-313. - https://www.ncbi.nlm.nih.gov/pubmed/31114366
  17. Higgins L, Palee S, Chattipakorn SC, Chattipakorn N (2019) Effects of metformin on the heart with ischaemia-reperfusion injury: Evidence of its benefits from in vitro, in vivo and clinical reports. Eur J Pharmacol 858:172489. - https://www.sciencedirect.com/science/article/pii/S0014299919304418
  18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5654524/
  19. https://www.ncbi.nlm.nih.gov/pubmed/30151735
  20. https://journals.lww.com/jhypertension/Abstract/2017/01000/Effects_of_metformin_on_blood_pressure_in.4.aspx
  21. https://pubmed.ncbi.nlm.nih.gov/28208582-nutrients-in-energy-and-one-carbon-metabolism-learning-from-metformin-users/?from_term=Obesity+and+comorbidities+and+mitochondria&from_page=4&from_pos=1

MitoPedia: mitObesity drugs

Questions.jpg


Click to expand or collaps
- >>>>>>> - Click on [Collapse] or [Expand] - >>>>>>>
TermAbbreviationDescription
AspirinAspirin is a widely applied drug that requires dosage adjusted to individual body mass. It is a non-selective COX inhibitor and exerts an effect on long-chain fatty acid transport into mitochondria.
CurcuminCurcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. The protective effects of curcumin on rat heart mitochondrial injuries induced by in vitro anoxia–reoxygenation were evaluated by Xu et al 2013. It was found that curcumin added before anoxia or immediately prior to reoxygenation exhibited remarkable protective effects against anoxia–reoxygenation induced oxidative damage to mitochondria.
ElamipretideBendaviaBendavia (Elamipretide) was developed as a mitochondria-targeted drug against degenerative diseases, including cardiac ischemia-reperfusion injury. Clinical trials showed variable results. It is a cationic tetrapeptide which readily passes cell membranes, associates with cardiolipin in the mitochondrial inner membrane. Supercomplex-associated CIV activity significantly improved in response to elamipretide treatment in the failing human heart.
FlavonoidsFlavonoids are a group of bioactive polyphenols with potential antioxidant and anti-inflammatory effects, abundant in fruits and vegetables, and in some medicinal herbs. Flavonoids are synthesized in plants from phenylalanine. Dietary intake of flavonoids as nutraceuticals is discussed for targeting T2D and other degenerative diseases.
MelatoninaMTMelatonin (N-acetyl-5-methoxytryptamine, aMT) is a highly conserved molecule present in unicellular to vertebrate organisms. Melatonin is synthesized from tryptophan in the pinealocytes by the pineal gland and also is produced in other organs, tissues and fluids (extrapineal melatonin). Melatonin has lipophilic and hydrophilic nature which allows it to cross biological membranes. Therefore, melatonin is present in all subcellular compartments predominantly in the nucleus and mitochondria. Melatonin has pleiotropic functions with powerful antioxidant, anti-inflammatory and oncostatic effects with a wide spectrum of action particularly at the level of mitochondria. Â» MiPNet article
MetforminMetformin (dimethylbiguanide) is mainly known as an important antidiabetic drug which is effective, however, in a wide spectrum of degenerative diseases. It is an inhibitor of Complex I and glycerophosphate dehydrogenase complex.
RapamycinRapamycin is an inhibitor of the mammalian/mechanistic target of rapamycin, complex 1 (mTORC1). Rapamycin induces autophagy and dyscouples mitochondrial respiration. Rapamycin delays senescence in human cells, and extends lifespan in mice without detrimental effects on mitochondrial fitness in skeletal muscle.
ResveratrolResveratrol is a natural bioactive phenol prouced by several plants with antioxidant and anti-inflammatory effects. Dietary intake as nutraceutical is discussed for targeting mitochondria with a wide spectrum of action in degenerative diseases.
SpermidineSpermidine is a polycationic bioactive polyamine mainly found in wheat germ, soybean and various vegetables, involved in the regulation of mitophagy, cell growth and cell death. Like other caloric restriction mimetics, spermidine is effective in cardioprotection, neuroprotection and anticancer immunosuppression by preserving mitochondrial function and control of autophagy.
MitoFit-to-aging.jpg
Healthy reference population     Body mass excess         BFE         BME cutoffs         BMI         H         M         VO2max         mitObesity drugs




MitoPedia concepts: MiP concept 


Labels:






MitoPedia:mitObesity drug