Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Mikulas 2020 Materials

From Bioblast
Revision as of 11:00, 21 September 2020 by Komlodi Timea (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Publications in the MiPMap
Mikulás K, Komlódi T, Földes A, Sváb G, Horváth G, Nagy AM, Ambrus A, Gyulai-Gaál Sz, Gera I, Hermann P, Varga G, Tretter L (2020) Bioenergetic Impairment of triethylene glycol dimethacrylate- (TEGDMA-) treated dental pulp stem cells (DPSCs) and isolated brain mitochondria are amended by redox compound methylene blue. Materials (Basel) 13(16):3472.

» PMID: 32781723

Mikulas Krisztina, Komlodi Timea, Földes Anna, Sváb Gergely, Horváth Gergö, Nagy Àdám Miklós, Ambrus Attila, Gyulai-Gaál Szabolcs, Gera István, Hermann Peter, Varga Gábor, Tretter Laszlo (2020) Materials (Basel)

Abstract: Background: Triethylene glycol dimethacrylate (TEGDMA) monomers released from resin matrix are toxic to dental pulp cells, induce apoptosis, oxidative stress and decrease viability. Recently, mitochondrial complex I (CI) was identified as a potential target of TEGDMA. In isolated mitochondria supported by CI, substrates oxidation and ATP synthesis were inhibited, reactive oxygen species production was stimulated. Contrary to that, respiratory Complex II was not impaired by TEGDMA. The beneficial effects of electron carrier compound methylene blue (MB) are proven in many disease models where mitochondrial involvement has been detected. In the present study, the bioenergetic effects of MB on TEGDMA-treated isolated mitochondria and on human dental pulp stem cells (DPSC) were analyzed.

Methods: Isolated mitochondria and DPSC were acutely exposed to low millimolar concentrations of TEGDMA and 2 μM concentration of MB. Mitochondrial and cellular respiration and glycolytic flux were measured by high resolution respirometry and by Seahorse XF extracellular analyzer. Mitochondrial membrane potential was measured fluorimetrically.

Results: MB partially restored the mitochondrial oxidation, rescued membrane potential in isolated mitochondria and significantly increased the impaired cellular O2 consumption in the presence of TEGDMA.

Conclusion: MB is able to protect against TEGDMA-induced CI damage, and might provide protective effects in resin monomer exposed cells. Copyright © 2018. Published by Elsevier Inc.

Bioblast editor: Komlodi T O2k-Network Lab: HU Budapest Tretter L


Labels: MiParea: Respiration, Pharmacology;toxicology  Pathology: Other  Stress:Oxidative stress;RONS  Organism: Human, Guinea pig  Tissue;cell: Stem cells  Preparation: Permeabilized cells, Isolated mitochondria, Intact cells 


Coupling state: ROUTINE, OXPHOS, ET  Pathway: N, S, ROX  HRR: Oxygraph-2k, O2k-Fluorometer 

Labels, 2020-09