Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

PM-pathway control state

From Bioblast
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


high-resolution terminology - matching measurements at high-resolution


PM-pathway control state

Description

PM

PM: Pyruvate & Malate.

MitoPathway control state: NADH Electron transfer-pathway state


Upstream of the NAD-junction, Pyruvate (P) is oxidatively decarboxylated to acetyl-CoA and CO2, yielding NADH catalyzed by pyruvate dehydrogenase. Malate (M) is oxidized to oxaloacetate by mt-malate dehydrogenase located in the mitochondrial matrix. Condensation of oxaloacate with acetyl-CoA yields citrate (citrate synthase). 2-oxoglutarate (Ξ±-ketoglutarate) is formed from isocitrate (isocitrate dehydrogenase).

Abbreviation: PM

Reference: Gnaiger 2020 BEC MitoPathways

More details
Β» NADH electron transfer-pathway state
Β» Additive effect of convergent electron flow
Β» Respiratory complexes - more than five
Β» Convergent electron flow
Gnaiger 2020 BEC MitoPathways

PML

With PM as N-substrates, LEAK respiration L can be evaluated in the following SUIT protocols:


PMP

With PM as N-substrates, OXPHOS capacity P can be evaluated in the following SUIT protocols:

PME

With PM as N-substrates, ET capacity E can be evaluated in the following SUIT protocols:


Linear coupling control in the N-pathway control state: L β†’ P β†’ E

  • P-L
P-L control efficiency, jP-L = (P-L)/P = 1-L/P, is measured in the N-pathway state, with defined coupling sites (CI, CIII, CIV).
  • P-E
CCCP is titrated stepwise to maximum flux, to evaluate limitation of OXPHOS by the phosphorylation system, expressed as the E-P control efficiency jE-P = (E-P)/E = 1-P/E.
If jE-P>0, then the E-L coupling efficiency rather than the P-L control efficiency is the proper expression of coupling, jE-L = (E-L)/E = 1-L/E.


Discussion

The Pyruvate anaplerotic pathway control state (pyruvate alone) is not an ET-pathway competent substrate state in most mt-preparations, since acetyl-CoA accumulates without the co-substrate (oxaloacetate) of citrate synthase.
The Malate-anaplerotic pathway control state (M alone) is not an ET-pathway competent substrate state in many mt-preparations, since oxaloacetate accumulates without the co-substrate (acetyl-CoA) of citrate synthase.


MitoPedia concepts: SUIT state