Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Rosenfeld 2003 Yeast"

From Bioblast
Line 7: Line 7:
|abstract=Saccharomyces cerevisiae is a facultative anaerobe devoid of mitochondrial alternative oxidase. In this yeast, the structure and biogenesis of the respiratory chain, on the one hand, and the functional interactions of oxidative phosphorylation with the cellular energetic metabolism, on the other, are well documented. However, to our knowledge, the molecular aspects and the physiological roles of the non-respiratory pathways that utilize molecular oxygen have not yet been reviewed. In this paper, we review the various non-respiratory pathways in a global context of utilization of molecular oxygen in S. cerevisiae. The roles of these pathways are examined as a function of environmental conditions, using either physiological, biochemical or molecular data. Special attention is paid to the characterization of the so-called 'cyanide-resistant respiration' that is induced by respiratory deficiency, catabolic repression and oxygen limitation during growth. Finally, several aspects of oxygen sensing are discussed.
|abstract=Saccharomyces cerevisiae is a facultative anaerobe devoid of mitochondrial alternative oxidase. In this yeast, the structure and biogenesis of the respiratory chain, on the one hand, and the functional interactions of oxidative phosphorylation with the cellular energetic metabolism, on the other, are well documented. However, to our knowledge, the molecular aspects and the physiological roles of the non-respiratory pathways that utilize molecular oxygen have not yet been reviewed. In this paper, we review the various non-respiratory pathways in a global context of utilization of molecular oxygen in S. cerevisiae. The roles of these pathways are examined as a function of environmental conditions, using either physiological, biochemical or molecular data. Special attention is paid to the characterization of the so-called 'cyanide-resistant respiration' that is induced by respiratory deficiency, catabolic repression and oxygen limitation during growth. Finally, several aspects of oxygen sensing are discussed.
|keywords=Saccharomyces cerevisiae /Β  oxygen consumption / non-respiratory pathways / ROX / ROS/ P450
|keywords=Saccharomyces cerevisiae /Β  oxygen consumption / non-respiratory pathways / ROX / ROS/ P450
|mipnetlab=FR LaRochelle Rosenfeld E
|mipnetlab=FR La Rochelle Rosenfeld E
|discipline=Mitochondrial Physiology, Environmental Physiology; Toxicology, Pharmacology; Biotechnology
|discipline=Mitochondrial Physiology, Environmental Physiology; Toxicology, Pharmacology; Biotechnology
}}
}}

Revision as of 17:39, 13 March 2013

Publications in the MiPMap
Rosenfeld E, Beauvoit B (2003) Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae. Yeast 20:1115-1144.

Β» PMID:14558145

Rosenfeld E, Beauvoit B (2003) Yeast

Abstract: Saccharomyces cerevisiae is a facultative anaerobe devoid of mitochondrial alternative oxidase. In this yeast, the structure and biogenesis of the respiratory chain, on the one hand, and the functional interactions of oxidative phosphorylation with the cellular energetic metabolism, on the other, are well documented. However, to our knowledge, the molecular aspects and the physiological roles of the non-respiratory pathways that utilize molecular oxygen have not yet been reviewed. In this paper, we review the various non-respiratory pathways in a global context of utilization of molecular oxygen in S. cerevisiae. The roles of these pathways are examined as a function of environmental conditions, using either physiological, biochemical or molecular data. Special attention is paid to the characterization of the so-called 'cyanide-resistant respiration' that is induced by respiratory deficiency, catabolic repression and oxygen limitation during growth. Finally, several aspects of oxygen sensing are discussed. β€’ Keywords: Saccharomyces cerevisiae / oxygen consumption / non-respiratory pathways / ROX / ROS/ P450

β€’ O2k-Network Lab: FR La Rochelle Rosenfeld E


Labels:

Stress:Hypoxia, RONS; Oxidative Stress"RONS; Oxidative Stress" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property., Aging; Senescence"Aging; Senescence" is not in the list (Cell death, Cryopreservation, Ischemia-reperfusion, Permeability transition, Oxidative stress;RONS, Temperature, Hypoxia, Mitochondrial disease) of allowed values for the "Stress" property.  Organism: Yeast; Fungi"Yeast; Fungi" is not in the list (Human, Pig, Mouse, Rat, Guinea pig, Bovines, Horse, Dog, Rabbit, Cat, ...) of allowed values for the "Mammal and model" property. 

Preparation: Intact Cell; Cultured; Primary"Intact Cell; Cultured; Primary" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property., Oxidase; Biochemical Oxidation"Oxidase; Biochemical Oxidation" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property.  Enzyme: Complex I, Complex II; Succinate Dehydrogenase"Complex II; Succinate Dehydrogenase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property., Complex III, Complex IV; Cytochrome c Oxidase"Complex IV; Cytochrome c Oxidase" is not in the list (Adenine nucleotide translocase, Complex I, Complex II;succinate dehydrogenase, Complex III, Complex IV;cytochrome c oxidase, Complex V;ATP synthase, Inner mt-membrane transporter, Marker enzyme, Supercomplex, TCA cycle and matrix dehydrogenases, ...) of allowed values for the "Enzyme" property.  Regulation: Mitochondrial Biogenesis; Mitochondrial Density"Mitochondrial Biogenesis; Mitochondrial Density" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Aerobic and Anaerobic Metabolism"Aerobic and Anaerobic Metabolism" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Substrate; Glucose; TCA Cycle"Substrate; Glucose; TCA Cycle" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property., Redox State"Redox State" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 



Spectrophotometry; Spectrofluorimetry