Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Carrico 2018 Cell Metab

From Bioblast
Publications in the MiPMap
Carrico C, Meyer JG, He W, Gibson BW, Verdin E (2018) The mitochondrial acylome emerges: proteomics, regulation by Sirtuins, and metabolic and disease implications. Cell Metab 27:497-512.

Β» PMID: 29514063

Carrico C, Meyer JG, He W, Gibson BW, Verdin E (2018) Cell Metab

Abstract: Post-translational modification of lysine residues via reversible acylation occurs on proteins from diverse pathways, functions, and organisms. While nuclear protein acylation reflects the competing activities of enzymatic acyltransferases and deacylases, mitochondrial acylation appears to be driven mostly via a non-enzymatic mechanism. Three protein deacylases, SIRT3, SIRT4, and SIRT5, reside in the mitochondria and remove these modifications from targeted proteins in an NAD+-dependent manner. Recent proteomic surveys of mitochondrial protein acylation have identified the sites of protein acetylation, succinylation, glutarylation, and malonylation and their regulation by SIRT3 and SIRT5. Here, we review recent advances in this rapidly moving field, their biological significance, and their implications for mitochondrial function, metabolic regulation, and disease pathogenesis.

β€’ Bioblast editor: Gnaiger E

Cited by

Gnaiger Erich et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1.
Gnaiger E et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. doi:10.26124/bec:2020-0001.v1.



Labels:




Regulation: Redox state 



BEC 2020.1