Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Dang 2014 Plant Cell

From Bioblast
Publications in the MiPMap
Dang KV, Plet J, Tolleter D, Jokel M, Cuiné S, Carrier P, Auroy P, Richaud P, Johnson X, Alric J, Allahverdiyeva Y, Peltier G (2014) Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 26:3036-50.

» PMID:24989042

Dang Kieu-Van, Plet Julie, Tolleter Dimitri, Jokel Martina, Cuiné Stephan, Carrier Patrick, Auroy Pascaline, Richaud Pierre, Johnson Xenie, Alric Jean, Allahverdiyeva Yagut, Peltier Gilles (2014) Plant Cell

Abstract: During oxygenic photosynthesis, metabolic reactions of CO2 fixation require more ATP than is supplied by the linear electron flow operating from photosystem II to photosystem I (PSI). Different mechanisms, such as cyclic electron flow (CEF) around PSI, have been proposed to participate in reequilibrating the ATP/NADPH balance. To determine the contribution of CEF to microalgal biomass productivity, here, we studied photosynthesis and growth performances of a knockout Chlamydomonas reinhardtii mutant (pgrl1) deficient in PROTON GRADIENT REGULATION LIKE1 (PGRL1)-mediated CEF. Steady state biomass productivity of the pgrl1 mutant, measured in photobioreactors operated as turbidostats, was similar to its wild-type progenitor under a wide range of illumination and CO2 concentrations. Several changes were observed in pgrl1, including higher sensitivity of photosynthesis to mitochondrial inhibitors, increased light-dependent O2 uptake, and increased amounts of flavodiiron (FLV) proteins. We conclude that a combination of mitochondrial cooperation and oxygen photoreduction downstream of PSI (Mehler reactions) supplies extra ATP for photosynthesis in the pgrl1 mutant, resulting in normal biomass productivity under steady state conditions. The lower biomass productivity observed in the pgrl1 mutant in fluctuating light is attributed to an inability of compensation mechanisms to respond to a rapid increase in ATP demand.


Labels: MiParea: Respiration 


Organism: Algae 





Photosynthesis