Mracek 2013 Biochim Biophys Acta
MrΓ‘Δek T, Drahota Z, Houstek J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta 1827:401-10. https://doi.org/10.1016/j.bbabio.2012.11.014 |
Mracek Tomas, Drahota Zdenek, Houstek Josef (2012) Biochim Biophys Acta
Abstract: Mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH) is not included in the traditional textbook schemes of the respiratory chain, reflecting the fact that it is a non-standard, tissue-specific component of mammalian mitochondria. But despite its very simple structure, mGPDH is a very important enzyme of intermediary metabolism and as a component of glycerophosphate shuttle it functions at the crossroads of glycolysis, oxidative phosphorylation and fatty acid metabolism. In this review we summarize the present knowledge on the structure and regulation of mGPDH and discuss its metabolic functions, reactive oxygen species production and tissue and organ specific roles in mammalian mitochondria at physiological and pathological conditions. β’ Keywords: GPD2 gene, mitochondrial glycerol-3-phosphate dehydrogenase, glycerophosphate shuttle, ROS production, pathophysiology β’ Bioblast editor: Doerrier C β’ O2k-Network Lab: CZ Prague Houstek J
Correction: FADH2 and Complex II
- FADH2 is shown as the substrate feeding electrons into Complex II (CII). This is wrong and requires correction - for details see Gnaiger (2024).
- Gnaiger E (2024) Complex II ambiguities β FADH2 in the electron transfer system. J Biol Chem 300:105470. https://doi.org/10.1016/j.jbc.2023.105470 - Β»Bioblast linkΒ«
Labels:
MitoFit 2022 NADH