Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Difference between revisions of "Benavides 2007 Proc Natl Acad Sci U S A"

From Bioblast
Β 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Publication
{{Publication
|title=Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104: 17977-17982.
|title=Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977-82.
|info=[http://www.ncbi.nlm.nih.gov/pubmed/17951430 PMID: 17951430 ]
|info=[http://www.ncbi.nlm.nih.gov/pubmed/17951430 PMID: 17951430 Open Access]
|authors=Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW
|authors=Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW
|year=2007
|year=2007
Line 29: Line 29:
that the capacity to produce H2S can be used to standardize
that the capacity to produce H2S can be used to standardize
garlic dietary supplements.
garlic dietary supplements.
|keywords=Allium, Aorta polysulfides, Red blood cells, Vasorelaxation
|keywords=Allium, Aorta polysulfides, Red blood cells, Vasorelaxation
|mipnetlab=US AL Birmingham Kraus DW,
|mipnetlab=US AL Birmingham Kraus DW
}}
}}
{{Labeling
{{Labeling
|organism=Human
|tissues=Blood cells
|preparations=Intact cells
|instruments=Oxygraph-2k
|instruments=Oxygraph-2k
|organism=Human
|tissues=Blood Cell; Suspension Culture
|preparations=Intact Cell; Cultured; Primary
|additional=DatLab
|additional=DatLab
}}
}}

Latest revision as of 14:52, 20 March 2015

Publications in the MiPMap
Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977-82.

Β» PMID: 17951430 Open Access

Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Proc Natl Acad Sci U S A

Abstract: The consumption of garlic is inversely correlated with the progression of cardiovascular disease, although the responsible mechanisms remain unclear. Here we show that human RBCs convert garlic-derived organic polysulfides into hydrogen sulfide (H2S), an endogenous cardioprotective vascular cell signaling molecule. This H2S production, measured in real time by a novel polarographic H2S sensor, is supported by glucosemaintained cytosolic glutathione levels and is to a large extent reliant on reduced thiols in or on the RBC membrane. H2S production from organic polysulfides is facilitated by allyl substituents and by increasing numbers of tethering sulfur atoms. Allyl-substituted polysulfides undergo nucleophilic substitution at the alfa-carbon of the allyl substituent, thereby forming a hydropolysulfide (RSnH), a key intermediate during the formation of H2S. Organic polysulfides (R-Sn-R'; n > 2) also undergo nucleophilic substitution at a sulfur atom, yielding RSnH and H2S. Intact aorta rings, under physiologically relevant oxygen levels, also metabolize garlic-derived organic polysulfides to liberate H2S. The vasoactivity of garlic compounds is synchronous with H2S production, and their potency to mediate relaxation increases with H2S yield, strongly supporting our hypothesis that H2S mediates the vasoactivity of garlic. Our results also suggest that the capacity to produce H2S can be used to standardize garlic dietary supplements. β€’ Keywords: Allium, Aorta polysulfides, Red blood cells, Vasorelaxation

β€’ O2k-Network Lab: US AL Birmingham Kraus DW


Labels:


Organism: Human  Tissue;cell: Blood cells  Preparation: Intact cells 



HRR: Oxygraph-2k 

DatLab