Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Gatza 2011 Sci Transl Med

From Bioblast
Publications in the MiPMap
Gatza E, Wahl DR, Opipari AW, Sundberg TB, Reddy P, Liu C, Glick GD, Ferrara JL (2011) Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci. Transl. Med. 3(67):67ra8.

Β» PMID:21270339

Gatza E, Wahl DR, Opipari AW, Sundberg TB, Reddy P, Liu C, Glick GD, Ferrara JL (2011) Sci. Transl. Med.

Abstract: Cells generate adenosine triphosphate (ATP) by glycolysis and by oxidative phosphorylation (OXPHOS). Despite the importance of having sufficient ATP available for the energy-dependent processes involved in immune activation, little is known about the metabolic adaptations that occur in vivo to meet the increased demand for ATP in activated and proliferating lymphocytes. We found that bone marrow (BM) cells proliferating after BM transplantation (BMT) increased aerobic glycolysis but not OXPHOS, whereas T cells proliferating in response to alloantigens during graft-versus-host disease (GVHD) increased both aerobic glycolysis and OXPHOS. Metabolomic analysis of alloreactive T cells showed an accumulation of acylcarnitines consistent with changes in fatty acid oxidation. Alloreactive T cells also exhibited a hyperpolarized mitochondrial membrane potential (ΔΨm), increased superoxide production, and decreased amounts of antioxidants, whereas proliferating BM cells did not. Bz-423, a small-molecule inhibitor of the mitochondrial F(1)F(0) adenosine triphosphate synthase (F(1)F(0)-ATPase), selectively increased superoxide and induced the apoptosis of alloreactive T cells, which arrested established GVHD in several BMT models without affecting hematopoietic engraftment or lymphocyte reconstitution. These findings challenge the current paradigm that activated T cells meet their increased demands for ATP through aerobic glycolysis, and identify the possibility that bioenergetic and redox characteristics can be selectively exploited as a therapeutic strategy for immune disorders.


β€’ O2k-Network Lab: US MI Ann Arbor Glick GD


Labels:


Organism: Mouse  Tissue;cell: Blood Cell; Suspension Culture"Blood Cell; Suspension Culture" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property.  Preparation: Intact Cell; Cultured; Primary"Intact Cell; Cultured; Primary" is not in the list (Intact organism, Intact organ, Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria, SMP, Chloroplasts, Enzyme, Oxidase;biochemical oxidation, ...) of allowed values for the "Preparation" property. 

Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k