Schiffer 2016 Am J Physiol Cell Physiol

From Bioblast
Revision as of 13:42, 7 March 2020 by Gnaiger Erich (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Publications in the MiPMap
Schiffer TA, Peleli M, Sundqvist ML, Ekblom B, Lundberg JO, Weitzberg E, Larsen FJ (2016) Control of human energy expenditure by cytochrome c oxidase subunit IV-2. Am J Physiol Cell Physiol 311:C452-61.

Β» PMID: 27486093

Schiffer TA, Peleli M, Sundqvist ML, Ekblom B, Lundberg JO, Weitzberg E, Larsen FJ (2016) Am J Physiol Cell Physiol

Abstract: Resting metabolic rate (RMR) in humans shows pronounced individual variations, but the underlying molecular mechanism remains elusive. Cytochrome c oxidase (COX) plays a key role in control of metabolic rate, and recent studies of the subunit 4 isoform 2 (COX IV-2) indicate involvement in the cellular response to hypoxia and oxidative stress. We evaluated whether the COX subunit IV isoform composition may explain the pronounced individual variations in resting metabolic rate (RMR). RMR was determined in healthy humans by indirect calorimetry and correlated to levels of COX IV-2 and COX IV-1 in vastus lateralis. Overexpression and knock down of the COX IV isoforms were performed in primary myotubes followed by evaluation of the cell respiration and production of reactive oxygen species. Here we show that COX IV-2 protein is constitutively expressed in human skeletal muscle and strongly correlated to RMR. Primary human myotubes overexpressing COX IV-2 displayed markedly (>60%) lower respiration, reduced (>50%) cellular H2O2 production, higher resistance toward both oxidative stress, and severe hypoxia compared with control cells. These results suggest an important role of isoform COX IV-2 in the control of energy expenditure, hypoxic tolerance, and mitochondrial ROS homeostasis in humans.

Copyright Β© 2016 the American Physiological Society. β€’ Keywords: High-resolution respirometry, Mitochondria, Resting metabolic rate β€’ Bioblast editor: Kandolf G β€’ O2k-Network Lab: SE Uppsala Liss P, SE Stockholm Sahlin K, SE Stockholm Weitzberg E, SE Stockholm Larsen FJ


Labels: MiParea: Respiration, Genetic knockout;overexpression 

Stress:Oxidative stress;RONS, Hypoxia  Organism: Human  Tissue;cell: Skeletal muscle, HEK  Preparation: Intact cells, Permeabilized cells, Isolated mitochondria  Enzyme: Complex IV;cytochrome c oxidase  Regulation: Oxygen kinetics  Coupling state: LEAK, ROUTINE, OXPHOS, ET  Pathway: N, NS  HRR: Oxygraph-2k, TIP2k, O2k-Fluorometer 

2017-08, AmR 

Cookies help us deliver our services. By using our services, you agree to our use of cookies.