Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Electric current density''' is [[current]] spanided by area, ''j''=''I". Since there have been only a few results, also nearby values are displayed.

Showing below up to 10 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Dihydroethidium  + ('''Dihydroethidium''' (also called hydroet โ€ฆ '''Dihydroethidium''' (also called hydroethidine) is a cell permeant fluorescent probe used to analyse superoxide presence. It is a reduced form of ethidium that presents blue fluorescence, and after oxidation by superoxide becomes able to intercalate DNA and emits red fluorescence (excitation wavelength ~518โ€“535 nm, emission ~605โ€“610 nm). It has been used to detect superoxide by HPLC and by fluorescence microscopy.de by HPLC and by fluorescence microscopy.)
  • Dimension  + ('''Dimensions''' are defined in the SI {'' โ€ฆ '''Dimensions''' are defined in the SI {''Quote''}: Physical quantities can be organized in a system of dimensions, where the system used is decided by convention. Each of the seven base quantities used in the SI is regarded as having its own dimension. .. All other quantities, with the exception of [[count]]s, are derived quantities, which may be written in terms of base quantities according to the equations of physics. The dimensions of the derived quantities are written as products of powers of the dimensions of the base quantities using the equations that relate the derived quantities to the base quantities.</br></br>There are quantities ''Q'' for which the defining equation is such that all of the dimensional exponents in the equation for the dimension of ''Q'' are zero. This is true in particular for any quantity that is defined as the ratio of two quantities of the same kind. .. There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a [[count]]. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. {''end of Quote'': p 136, [[Bureau International des Poids et Mesures 2019 The International System of Units (SI)]]}[[Bureau International des Poids et Mesures 2019 The International System of Units (SI)]]})
  • Dimethyl sulfoxide  + ('''Dimethyl sulfoxide''' is a polar aproti โ€ฆ '''Dimethyl sulfoxide''' is a polar aprotic solvent that dissolves both polar and nonpolar compounds and is miscible in a wide range of organic solvents as well as water. DMSO may also be used as a cryoprotectant, added to cell media to reduce ice formation and thereby prevent cell death during the freezing process.nt cell death during the freezing process.)
  • Dinitrochlorobenzene  + ('''Dinitrochlorobenzene (1-chloro-2,4-dinitrobenzene)''' (DNCB) is a glutathione (GSH) inhibitor.)
  • Disconnect - DatLab  + ('''Disconnect''' DatLab 8 from the O2k. This option is not available while recording a measurement ([[Stop measurement]] first). '''DatLab 7''' : [[Save and Disconnect]])
  • Display DatLab help  + ('''Display DatLab help''' In this section โ€ฆ '''Display DatLab help'''</br></br>In this section, we present some issues that could happen during your data analysis related to the graphs display and how to fix them quickly.</br></br>Case in which an issue might occur:</br></br>::* While analysing your data, trying to close the program while the graph is still being loaded. If you cancel the closing window, the graph will not be loaded at the screen.</br></br>In the event of a frozen display of the graphs, try the alternatives below:</br></br>::* Click on: Graph > Autoscale time axis</br>::* Click on: Graph > Scaling (F6); then press OK to confirm the scaling and induce the program to reload the graphs (no changes in the graphs are required). graphs (no changes in the graphs are required).)
  • Dyscoupled respiration  + ('''Dyscoupled respiration''' is [[LEAK respiration]] โ€ฆ '''Dyscoupled respiration''' is [[LEAK respiration]] distinguished from intrinsically (physiologically) uncoupled and from extrinsic experimentally [[Uncoupler|uncoupled]] respiration as an indication of extrinsic uncoupling (pathological, toxicological, pharmacological by agents that are not specifically applied to induce uncoupling, but are tested for their potential dyscoupling effect). Dyscoupling indicates a mitochondrial dysfunction. </br></br>In addition to intrinsic uncoupling, dyscoupling occurs under pathological and toxicological conditions. Thus a distinction is made between physiological uncoupling and pathologically defective dyscoupling in mitochondrial respiration. dyscoupling in mitochondrial respiration.)
  • Ectotherms  + ('''Ectotherms''' are organisms whose body temperatures conform to the thermal environment. In many cases, therefore, ectotherms are [[poicilotherms | poicilothermic]].)
  • Editorial board participation  + ('''Editorial board participation''' is a topic addressed in [[COPE core practices for research]].)
  • Electric current density  + ('''Electric current density''' is [[current]] divided by area, ''j''=''I''ยท''A''<sup>-1</sup> [Cยทm<sup>-2</sup>]. Compare: [[density]].)
 ('''Electric current density''' is [[current]] divided by area, ''j''=''I)
  • Electron flow  + ('''Electron flow''' through the mitochondr โ€ฆ '''Electron flow''' through the mitochondrial [[Electron transfer pathway]] (ET-pahway) is the scalar component of chemical reactions in oxidative phosphorylation ([[OXPHOS]]). Electron flow is most conveniently measured as oxygen consumption (oxygraphic measurement of [[oxygen flow]]), with four electrons being taken up when oxygen (O<sub>2</sub>) is reduced to water.xygen (O<sub>2</sub>) is reduced to water.)
  • Electron-transferring flavoprotein Complex  + ('''Electron-transferring flavoprotein Comp โ€ฆ '''Electron-transferring flavoprotein Complex''' (CETF) is a respiratory Complex localized at the matrix face of the inner mitochondrial membrane, supplies electrons to Q, and is thus an enzyme Complex of the mitochondrial [[Electron transfer pathway]] (ET-pathway). CETF links the รŸ-oxidation cycle with the membrane-bound electron transfer system in [[fatty acid oxidation]] (FAO).[fatty acid oxidation]] (FAO).)
  • Electronic-TIP2k Upgrading\O2k-Main Unit Series A-D  + ('''Electronic-TIP2k Upgrading\O2k-Main Unit Series A-D - Former Product ''': not required for [[O2k-Core]], the [[O2k-Main Unit]] has to be returned to the OROBOROS workshop.)
  • Electronic-TIP2k Upgrading\O2k-Main Unit Series E  + ('''Electronic-TIP2k Upgrading\O2k-Main Uni โ€ฆ '''Electronic-TIP2k Upgrading\O2k-Main Unit Series E - Former Series ''': not required for [[O2k-Core]], free of charge for Series E in conjunction with the purchase of the [[TIP2k-Module]], the [[O2k-Main Unit]] has to be returned to the OROBOROS workshop.s to be returned to the OROBOROS workshop.)
  • Enable DL-Protocol editing  + ('''Enable DL-Protocol editing''' is a nove โ€ฆ '''Enable DL-Protocol editing''' is a novel function of DatLab 7.4 offering a new feature in DL-Protocols: flexibility. Fixed sequences of events and marks can be changed (Skip/Added) in a SUIT protocol by the user. Moreover, the text, instructions, concentrations and titration volumes of injections in a specific DL-Protocol can be edited and saved as [[Export_DL-Protocol_User_(*.DLPU)| user-specific DL-Protocol]] [File]\Export\DL-Protocol User (*.DLPU). To enable it, under the 'Protocols' tab in the menu, select the option 'Enable DL-Protocol editing', and then select the plot in which the marks will be set (''e.g.,'' O2 flux per V). Select the 'Overview' window, where you will be able to edit events and marks names, definition/state, final concentration and titration volumes, as well as select a mark as 'multi' for multiple titration steps, skip a mark, or add a new event or mark. After saving, [[Export_DL-Protocol_User_(*.DLPU)|export a DL-Protocol User (DLPU)]] and load it before running the next experiments. If users of DatLab versions older than DatLab 7.4 wish to alter the nature of the chemicals used or the sequence of injections, we ask them to [https://www.oroboros.at/index.php/o2k-technical-support/ contact the O2k-Technical Support].</br></br>For more information:</br>[[Image:PlayVideo.jpg|50px|link=https://www.youtube.com/watch?v=Vd66dHx-MyI]] [https://www.youtube.com/watch?v=Vd66dHx-MyI Export DL-Protocol User (*.DLPU)]6dHx-MyI Export DL-Protocol User (*.DLPU)])
  • Endergonic  + ('''Endergonic''' transformations or proces โ€ฆ '''Endergonic''' transformations or processes can proceed in the forward direction only by coupling to an [[exergonic]] process with a driving force more negative than the positive force of the endergonic process. The backward direction of an endergonic process is exergonic. The distinction between endergonic and [[endothermic]] processes is at the heart of [[ergodynamics]], emphasising the concept of [[exergy]] changes, linked to the performance of [[work]], in contrast to [[enthalpy]] changes, linked to [[heat]] or thermal processes, the latter expression being terminologically linked to ''thermodynamics''.inologically linked to ''thermodynamics''.)
  • Endothermy  + ('''Endothermy''' is the constant regulation of body temperature by metabolic heat production and control of heat exchange with the environment.)
  • Energy saving in research  + ('''Energy saving in research''' must rank โ€ฆ '''Energy saving in research''' must rank as a priority of social responsibility โ€” ever since the [[Club of Rome]] published 50 years ago the seminal book on ''The limits to growth'' (1972) [1], and more so today in face of the global threat of climate change and the russian war in aggression against Ukraine.</br></br>Energy saving in research does not and must not clash with quality in research. Application of high-quality and predefined [[MitoPedia: SUIT |experimental protocols]] combined with evaluation of [[Replica |repeatability]] and [[Repetitions |reproducibility]] represents primary strategies for energy saving in research. Publication of irreproducible results โ€” adding to the [[reproducibility crisis]] โ€” is the most wasteful aspect of research in terms of resources including [[energy]] (more properly: [[exergy]]). [[Paywall journalism]] is wasteful in terms of financial resources. Dramatically increasing numbers of scientific publications is a pathway towards waste of energy [2]. </br></br>Besides large-scale strategies on e(n)xergy saving in research โ€” quality versus quantity โ€”, everybody's everyday contributions to energy saving count: to cut greenhouse gas emissions, save biological and geological diversity, and improve equality across societies, gender, continents, and countries.</br></br>Do scientists take responsibility for energy saving? Or does biomedical research merely find excuses? Scientific institutions in academia and industry must implement energy saving strategies to reduce waste according to the European Union's [https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en Energy efficiency directive], and to consume less energy (exergy) by using it more efficiently ([https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-targets_en Energy efficiency targets]).</br></br>Possible โ€” important but much neglected โ€” contributions include:</br>* Re-use materials as a superior strategy than recycling, and reduce application of disposable items.</br>* Reduce waste in cleaning procedures, but do not compromise the [[MiPNet19.03 O2k-cleaning and ISS |quality of cleaning procedures]].</br>* Replace inefficient equipment (e.g. water baths) by efficient electronic [[O2k-Peltier Temperature Control |Peltier temperature control]].</br>* Select conferences that you attend by evaluating their 'green deal' strategy. Combine in a single trip participation in a conference and possibly offered satellite events.</br>* Turn off non-essential equipment; reduce energy-wasting stand-by modes; turn off computer screens and other equipment at the mains when not in use. The monitor consumes over half of the energy used by the average computer. Lower your screen brightness.</br>* Turn off the lights when you do not gain from extra illumination, when you leave the lab during the day or at the end of every day.</br>* Reduce heating of the rooms to 19 ยฐC, cooling of rooms to 25 ยฐC. Apply energy-efficient heating and cooling strategies.</br>* Define your personal energy saving targets at homeoffice and in your workplace.</br>* Contact your energy quality manager, to suggest improvement of infrastructure and guidelines that help you and other members in the team to comply with energy saving targets.team to comply with energy saving targets.)
  • Enthalpy  + ('''Enthalpy''', ''H'' [J], can under condi โ€ฆ '''Enthalpy''', ''H'' [J], can under conditions of constant gas pressure neither be destroyed nor created (first law of thermodynamics: d<sub>i</sub>''H''/d''t'' = 0). The distinction between enthalpy and [[internal-energy]] of a system is due to external pressure-volume [[work]] carried out reversibly at constant gas pressure. The enthalpy change of the system, d''H'', at constant pressure, is the internal-energy change, d''U'', minus reversible pressure-volume work,</br> d''H'' = d''U'' - d<sub>''V''</sub>''W''</br>Pressure-volume work, d<sub>''V''</sub>''W'', at constant pressure, is the gas pressure, ''p'' [Pa = Jยทm<sup>-3</sup>], times change of volume, d''V'' [m<sup>3</sup>],</br> d<sub>''V''</sub>''W'' = -''p''ยทd''V'' [J]</br>The ''available'' work, d<sub>e</sub>''W'', is distinguished from external total work, d<sub>et</sub>''W'', [1]</br> d<sub>e</sub>''W'' = d<sub>et</sub>''W'' - d<sub>''V''</sub>''W''</br>The change of enthalpy of a system is due to internal and external changes,</br> d''H'' = d<sub>i</sub>''H'' + d<sub>e</sub>''H''</br>Since d<sub>i</sub>''H'' = 0 (first law of thermodynamics), the d''H'' is balanced by exchange of heat, work, and matter, </br> d''H'' = (d<sub>e</sub>''Q'' + d<sub>e</sub>''W'') + d<sub>mat</sub>''H'' ; d''p'' = 0 </br>The exchange of matter is expressed in enthalpy equivalents with respect to a [[reference state]] (formation, f, or combustion, c). The value of d''H'' in an open system, therefore, depends on the arbitrary choice of the reference state. In contrast, the terms in parentheses are the sum of all (total, t) partial energy transformations,</br> d<sub>t</sub>''H'' = (d<sub>e</sub>''Q'' + d<sub>e</sub>''W'')</br>A partial enthalpy change of transformation, d<sub>tr</sub>''H'', is distinguished from the total enthalpy change of all transformations, d<sub>t</sub>''H'', and from the enthalpy change of the system, d''H''. In a closed system, d''H'' = d<sub>t</sub>''H''. The enthalpy change of transformation is the sum of the [[Gibbs energy]] (free energy) change of transformation, d<sub>tr</sub>''G'', and the [[bound energy]] change of transformation at constant temperature and pressure, d<sub>tr</sub>''B'' = ''T''ยทd''S'',</br> d<sub>tr</sub>''H'' = d<sub>tr</sub>''G'' + d<sub>tr</sub>''B''bound energy]] change of transformation at constant temperature and pressure, d<sub>tr</sub>''B'' = ''T''ยทd''S'', d<sub>tr</sub>''H'' = d<sub>tr</sub>''G'' + d<sub>tr</sub>''B'')
  • Ethics on publishing  + ('''Ethics on publishing''' follow [https:/ โ€ฆ '''Ethics on publishing''' follow [https://publicationethics.org/core-practices COPE's guidelines] (or equivalent). A journal's policy on publishing ethics should be clearly visible on its website, and should refer to: (1) Journal policies on authorship and contributorship; (2) How the journal will handle complaints and appeals; (3) Journal policies on conflicts of interest / competing interests; (4) Journal policies on data sharing and reproducibility; (5) Journal's policy on ethical oversight; (6) Journal's policy on intellectual property; and (7) Journal's options for post-publication discussions and corrections.t-publication discussions and corrections.)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.