Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''F1000Research''' is an Open Research publishing platform for life sci". Since there have been only a few results, also nearby values are displayed.

Showing below up to 10 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Etomoxir  + ('''Etomoxir''' (Eto; 2[6(4-chlorophenoxy)h'''Etomoxir''' (Eto; 2[6(4-chlorophenoxy)hexyl]oxirane-2-carboxylate) is an irreversible inhibitor of [[carnitine palmitoyltransferase I]] (CPT-I) on the outer face of the mitochondrial inner membrane. Eto inhibits [[fatty acid oxidation]] by blocking the formation of acyl carnitines from long-chain fatty acids which require the carnitine shuttle for transport into mitochondria. In contrast to long-chain fatty acids, the transport of short- and medium-chain fatty acids is carnitine-independent.hain fatty acids is carnitine-independent.)
  • Exergonic  + ('''Exergonic''' transformations or process'''Exergonic''' transformations or processes can spontaneously proceed in the forward direction, entailing the irreversible loss of the potential to performe [[work]] (''erg'') with the implication of a positive internal [[entropy production]]. [[Ergodynamic equilibrium]] is obtained when an exergonic (partial) process is compensated by a coupled [[endergonic]] (partial) process, such that the Gibbs energy change of the total transformation is zero. Final [[thermodynamic equilibrium]] is reached when all exergonic processes are exhausted and all [[force]]s are zero. The backward direction of an exergonic process is endergonic. The distinction between exergonic and [[exothermic]] processes is at the heart of [[ergodynamics]], emphasising the concept of [[exergy]] changes, linked to the performance of [[work]], in contrast to [[enthalpy]] changes, linked to [[heat]] or thermal processes, the latter expression being terminologically linked to ''thermo''dynamics.inologically linked to ''thermo''dynamics.)
  • Exergy  + ('''Exergy''' includes external and interna'''Exergy''' includes external and internal [[work]]. Exergy as the external work is defined in the First Law of thermodynamics as a specific form of [[energy]]. Exergy as the dissipated Gibbs or Helmholtz energy is the irreversibly dissipated (internal) loss of the potential of performing work as defined in the Second Law of Thermodynamics. </br></br>Changes of exergy d''G'' plus [[bound energy]] yield the [[enthalpy]] change:</br></br> d''H'' = d''G'' + ''T''∙d''S'' = d''G'' + d''B'' = d''G'' + ''T''∙d''S'' = d''G'' + d''B'')
  • Experimental log - DatLab  + ('''Experimental log''' provides an automat'''Experimental log''' provides an automatically generated experimental protocol with detailed information about the O2k settings and calibrations, the [[Sample - DatLab|Sample]] information and various [[Events - DatLab |Events]]. Time-dependent information can be viewed for a single chamber or both chambers. The filter can be selected for viewing minimum information, intermittent by default, or all information. The experimental log can be viewed and saved as a PDF file by clicking on [Preview].ed as a PDF file by clicking on [Preview].)
  • Export as CSV - DatLab  + ('''Export as CSV''' (*.csv) exports plots and events to a text file for further use in Excel and other programs compatible with .csv extension.)
  • Extensive quantity  + ('''Extensive quantities''' pertain to a to'''Extensive quantities''' pertain to a total system, e.g. [[oxygen flow]]. An extensive quantity increases proportional with system size. The magnitude of an extensive quantity is completely additive for non-interacting subsystems, such as mass or flow expressed per defined system. The magnitude of these quantities depends on the extent or size of the system ([[Cohen 2008 IUPAC Green Book |Cohen et al 2008]]).[[Cohen 2008 IUPAC Green Book |Cohen et al 2008]]).)
  • External flow  + ('''External flows''' across the system boundaries are formally reversible. Their irreversible facet is accounted for internally as transformations in a heterogenous system ([[internal flow]]s, ''I''<sub>i</sub>).)
  • Extinction  + ('''Extinction''' is a synonym for [[absorbance]].)
  • Extrinsic fluorophores  + ('''Extrinsic fluorophores''' are molecules'''Extrinsic fluorophores''' are molecules labelled with a fluorescent dye (as opposed to intrinsic fluorescence or autofluorescence of molecules which does not require such labelling). They are available for a wide range of parameters including ROS (H<sub>2</sub>O<sub>2</sub>, [[Amplex red]]) (HOO<sup>-</sup>, MitoSOX) , mitochondrial membrane potential ([[Safranin]], JC1, [[TMRM]], [[Rhodamine 123]]), Ca<sup>2+</sup> ([[Fura2]], Indo 1, [[Calcium Green]]), pH (Fluorescein, HPTS, SNAFL-1), Mg<sup>2+</sup> ([[Magnesium Green]]) and redox state (roGFP).[[Magnesium Green]]) and redox state (roGFP).)
  • F1000Research  + ('''F1000Research''' is an Open Research pu'''F1000Research''' is an Open Research publishing platform for life scientists, offering immediate publication of articles and other research outputs without editorial bias. All articles benefit from transparent peer review and the inclusion of all source data. It is thus not a preprint server, but posters and slides can be published without author fees. Published posters and slides receive a DOI ([[digital object identifier]]) and become citable after a very basic check by our in-house editors. very basic check by our in-house editors.)
 ('''F1000Research''' is an Open Research publishing platform for life sci)
  • FADH2  + ('''FADH2''' and '''FAD''': see [[Flavin adenine dinucleotide]].)
  • FCCP  + ('''FCCP''' (Carbonyl cyanide p-trifluoro-m'''FCCP''' (Carbonyl cyanide p-trifluoro-methoxyphenyl hydrazone, C<sub>10</sub>H<sub>5</sub>F<sub>3</sub>N<sub>4</sub>O) is a protonophore or [[uncoupler]]: added at uncoupler concentration U<sub>''c''</sub>; ''c'' is the [[optimum uncoupler concentration]] in titrations to obtain maximum mitochondrial respiration in the [[noncoupled respiration|noncoupled]] state of [[ET capacity]].[[ET capacity]].)
  • Fatty acid oxidation  + ('''Fatty acid oxidation''' is a multi-step'''Fatty acid oxidation''' is a multi-step process by which [[fatty acid]]s are broken down in [[β-oxidation]] to generate acetyl-CoA, NADH and FADH<sub>2</sub> for further electron transfer to CoQ. Whereas NADH is the substrate of CI, FADH<sub>2</sub> is the substrate of [[electron-transferring flavoprotein complex]] (CETF) which is localized on the matrix face of the mtIM, and supplies electrons from FADH<sub>2</sub> to CoQ. Before the ß-oxidation in the mitochondrial matrix, fatty acids (short-chain with 1-6, medium-chain with 7–12, long-chain with >12 carbon atoms) are activated by fatty acyl-CoA synthases (thiokinases) in the cytosol. For the mitochondrial transport of long-chain fatty acids the mtOM-enzyme [[carnitine palmitoyltransferase I]] (CPT-1; considered as a rate-limiting step in FAO) is required which generates an acyl-carnitine intermediate from acyl-CoA and carnitine. In the next step, an integral mtIM protein [[carnitine-acylcarnitine translocase]] (CACT) catalyzes the entrance of acyl-carnitines into the mitochondrial matrix in exchange for free carnitines. In the inner side of the mtIM, another enzyme [[carnitine palmitoyltransferase 2]] (CPT-2) converts the acyl-carnitines to carnitine and acyl-CoAs, which undergo ß-oxidation in the mitochondrial matrix. Short- and medium-chain fatty acids do not require the carnitine shuttle for mitochondrial transport. [[Octanoate]], but not [[palmitate]], (eight- and 16-carbon saturated fatty acids) may pass the mt-membranes, but both are frequently supplied to mt-preparations in the activated form of [[octanoylcarnitine]] or [[palmitoylcarnitine]].mitoylcarnitine]].)
  • Fatty acid  + ('''Fatty acids''' are carboxylic acids wit'''Fatty acids''' are carboxylic acids with a carbon aliphatic chain. The fatty acids can be divided by the length of this chain, being considered as short-chain (1–6 carbons), medium-chain (7–12 carbons) and long-chain and very long-chain fatty acids (>12 carbons).</br>Long-chain fatty acids must be bound to [[Carnitine|carnitine]] to enter the mitochondrial matrix, in a reaction that can be catalysed by [[Carnitine acyltransferase|carnitine acyltransferase]]. For this reason, long-chain fatty acids, such as [[Palmitate|palmitate]] (16 carbons) is frequently supplied to mt-preparations in the activated form of [[Palmitoylcarnitine|palmitoylcarnitine]].</br>Fatty acids with shorter chains, as [[Octanoate|octanoate]] (8 carbons) may enter the mitochondrial matrix, however, in HRR they are more frequently supplied also in the activated form, such as [[Octanoylcarnitine|octanoylcarnitine]].</br></br>Once in the mitochondrial matrix, the [[Fatty acid oxidation|fatty acid oxidation]] (FAO) occurs, generating acetyl-CoA, NADH and FADH2. In the [[Fatty acid oxidation pathway control state|fatty acid oxidation pathway control state]] electrons are fed into the [[F-junction]] involving the [[electron transferring flavoprotein]] (CETF). FAO cannot proceed without a substrate combination of fatty acids & malate, and inhibition of CI blocks FAO. Low concentration of [[malate]], typically 0.1 mM, does not saturate the [[N-pathway]]; but saturates the [[Fatty acid oxidation pathway control state |F-pathway]].tty acid oxidation pathway control state |F-pathway]].)
  • Fermentation  + ('''Fermentation''' is the process of [[energy metabolism]]'''Fermentation''' is the process of [[energy metabolism]] used to supply ATP, where redox balance is maintained with internally produced electron acceptors (such as pyruvate or fumarate), without the use of external electron acceptors (such as O<sub>2</sub>). Fermentation thus contrasts with [[cell respiration]] and is an [[anaerobic]] process, but aerobic fermentation may proceed in the presence of oxygen.ic fermentation may proceed in the presence of oxygen.)
  • File search - DatLab  + ('''File search''' yields a list of all fil'''File search''' yields a list of all files labelled by the experimental code in a selected directory . Click on the file to preview the experimental log. With '''File Search''' you can search in all folders and subfolders on your computer for DatLab files with a selected experimental code. The experimental code is entered in the DatLab file in the window "Experiment" ([F3]). When you click on a folder and press the button search, the DatLab file names will appear on the right window. Click on a DatLab file and further information (e.g. Sample information, Background information) will appear in the window below.ormation) will appear in the window below.)
  • Filters  + ('''Filters''' are materials that have wave'''Filters''' are materials that have wavelength-dependent transmission characteristics. They are can be used to select the wavelength range of the light emerging from a [[light source]], or the range entering the [[detector]], having passed through the sample. In particular they are used in [[fluorometry]] to exclude wavelengths greater than the excitation wavelength from reaching the sample, preventing absorption interfering with the emitted [[fluorescence]]. Standard '''filters''' can also be used for calibrating purposes.can also be used for calibrating purposes.)
  • Flavin adenine dinucleotide  + ('''Flavin adenine dinucleotide''', FAD and'''Flavin adenine dinucleotide''', FAD and FADH<sub>2</sub>, is an oxidation-reduction [[prosthetic group]] (redox cofactor; compare [[NADH]]). FMN and FAD are the prosthetic groups of flavoproteins (flavin dehydrogenases). [[Electron-transfer-pathway state |Type F substrates]] (fatty acids) generate FADH<sub>2</sub>, the substrate of [[electron transferring flavoprotein]] (CETF). Thus FADH<sub>2</sub> forms a junction or funnel of electron transfer to CETF, the [[F-junction]] (compare [[N-junction]], [[Q-junction]]), in the [[F-pathway control state]]. In contrast, FADH<sub>2</sub> is not the substrate but the internal product of [[succinate dehydrogenase]] (CII). FAD is the oxidized (quinone) form, which is reduced to FADH<sub>2</sub> (hydroquinone form) by accepting two electrons and two protons.educed to FADH<sub>2</sub> (hydroquinone form) by accepting two electrons and two protons.)
  • Flavonoids  + ('''Flavonoids''' are a group of bioactive '''Flavonoids''' are a group of bioactive polyphenols with potential antioxidant and anti-inflammatory effects, abundant in fruits and vegetables, and in some medicinal herbs. Flavonoids are synthesized in plants from phenylalanine. Dietary intake of flavonoids as nutraceuticals is discussed for targeting T2D and other degenerative diseases.eting T2D and other degenerative diseases.)
  • Fluorescence  + ('''Fluorescence''' is the name given to li'''Fluorescence''' is the name given to light emitted by a substance when it is illuminated (excited) by light at a shorter wavelength. The [[incident light]] causes an electron transition to a higher energy band in the molecules. The electron then spontaneously returns to its original energy state emitting a photon. The intensity of the emitted light is proportional to the concentration of the substance. Fluorescence is one form of [[Luminescence]], especially Photoluminescence.[[Luminescence]], especially Photoluminescence.)