Vielhaber 1999 J Neurol Sci

From Bioblast
Revision as of 16:24, 5 October 2010 by Biljana (talk | contribs) (Created page with "{{Publication |title=Vielhaber S, Winkler K, Kirches E, Kunz D, Büchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS (1999) Visualization of defective mitochondrial fu...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Publications in the MiPMap
Vielhaber S, Winkler K, Kirches E, Kunz D, Büchner M, Feistner H, Elger CE, Ludolph AC, Riepe MW, Kunz WS (1999) Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis. J. Neurolog. Sci. 169: 133-139.

» PMID: 10540022


Abstract: The mitochondrial function in skeletal muscle was investigated in skeletal muscle biopsies of 26 patients with sporadic amyotrophic lateral sclerosis (ALS) and compared with investigations of 28 age-matched control muscle samples and biopsies of 6 patients with spinal muscular atrophy (SMA) and two patients with Tay-Sachs disease. In comparison to the control, SMA and Tay-Sachs biopsies, we observed in the ALS samples a significant about two-fold lower activity of complex I of mitochondrial respiratory chain. To visualise the distribution of the mitochondrial defect in skeletal muscle fibers we applied confocal laser-scanning microscopy and video fluorescence microscopy of NAD(P)H and fluorescent flavoproteins. The redox change of mitochondrial NAD(P)H and flavoproteins on addition of mitochondrial substrates, ADP, or cyanide were determined by measurement of fluorescence intensities with dual-photon UV-excitation and single-photon blue excitation. In skeletal muscle fibers of ALS patients with abnormalities of mitochondrial DNA (multiple deletions, n=1, or lower mtDNA levels, n=14) we observed a heterogeneous distribution of the mitochondrial defects among individual fibers and even within single fibers. In some patients (n=3) a mitochondrial defect was also detectable in cultivated skin fibroblasts. These findings support the viewpoint that the observed impairment of mitochondrial function in muscle of certain ALS patients is caused by an intrinsic mitochondrial defect which may be of pathophysiological significance in the etiology of this neurodegenerative disease. Keywords: Amyotrophic lateral sclerosis, Mitochondrial function, Oxidative phosphorylation, Confocal laser scanning microscopy


Labels:


Organism: Human  Tissue;cell: Skeletal Muscle"Skeletal Muscle" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property., Neurons; Brain"Neurons; Brain" is not in the list (Heart, Skeletal muscle, Nervous system, Liver, Kidney, Lung;gill, Islet cell;pancreas;thymus, Endothelial;epithelial;mesothelial cell, Blood cells, Fat, ...) of allowed values for the "Tissue and cell" property. 


Regulation: Respiration; OXPHOS; ETS Capacity"Respiration; OXPHOS; ETS Capacity" is not in the list (Aerobic glycolysis, ADP, ATP, ATP production, AMP, Calcium, Coupling efficiency;uncoupling, Cyt c, Flux control, Inhibitor, ...) of allowed values for the "Respiration and regulation" property. 


HRR: Oxygraph-2k