Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Oxidative stress''' results from an imbalance between pro-oxidants an". Since there have been only a few results, also nearby values are displayed.

Showing below up to 25 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • O2k status line  + ('''O2k status line''' is found above the [[O2k signal line]]'''O2k status line''' is found above the [[O2k signal line]]. It contains information about the chamber label, O2 calibration, amperometric calibration, potentiometric calibration, the [[block temperature]], the [[illumination]] in chambers, the TIP2k status and the [[Automatic pan]].[[Automatic pan]].)
  • O2k  + ('''O2k''' - [[Oroboros O2k]]: the modular system for [[high-resolution respirometry]].)
  • O2k-Amperometric OroboPOS Twin-Channel  + ('''O2k-Amperometric OroboPOS Twin-Channel''''O2k-Amperometric OroboPOS Twin-Channel''': Two-channel variable polarization voltage; current/voltage converter for the polarographic oxygen sensor (POS); amplifyer with digital gain settings (1x, 2x, 4x, 8x); A/D converter; output in the range -10 V to 10 V. Integral component of the [[O2k-Main Unit]].[[O2k-Main Unit]].)
  • O2k-Barometric Pressure Transducer  + ('''O2k-Barometric Pressure Transducer''', '''O2k-Barometric Pressure Transducer''', A/D converter and digital output to DatLab for continuous recording of [[barometric pressure]] [kPa or mmHg], integrated into the air calibration of the POS ([[MiPNet06.03 POS-calibration-SOP]]). Integral component of the [[O2k-Main Unit]]. The warranty on the accuracy of the signal obtained from the O2k-Barometric Pressure Transducer expires within three years.ure Transducer expires within three years.)
  • O2k-Electromagnetic Stirrer Twin-Control  + ('''O2k-Electromagnetic Stirrer Twin-Contro'''O2k-Electromagnetic Stirrer Twin-Control''' for smooth rotation of the [[Stirrer-Bar\white PVDF\15x6 mm|stirrer bars]] in the two [[O2k-chamber]]s; with slow-start function to prevent decoupling of the stirrer bar; regulated stirrer speed in the range of 100 to 800 rpm (decoupling may occur at higher stirrer speeds), independent for the two O2k-Chambers; automatic events sent to DatLab when the stirrer is switched on/off or when the rotation seed is changed by the experimenter. Integral component of the [[O2k-Main Unit]].[[O2k-Main Unit]].)
  • O2k-Main Power Cable  + ('''O2k-Main Power Cable''', for connecting the main unit to the power supply.)
  • O2k-Peltier Temperature Control  + ('''O2k-Peltier Temperature Control''': Bui'''O2k-Peltier Temperature Control''': Built-in electronic thermostat controlling temperature for two [[O2k-chamber]]s in the range of 4 to 47 °C; ±0.002 °C (at room temperature). Continuous recording of the O2k-Copper Block temperature with DatLab. Temperature change from 20 to 30 °C within 15 min; cooling from 30 to 20 °C within 20 min. Integral component of the [[O2k-Main Unit]]. The electronic temperature control of the O2k replaced the conventional water jacket.2k replaced the conventional water jacket.)
  • Obesity  + ('''Obesity''' is a disease resulting from '''Obesity''' is a disease resulting from excessive accumulation of body fat. In common obesity (non-syndromic obesity) excessive body fat is due to an obesogenic lifestyle with lack of physical exercise ('couch') and caloric surplus of food consumption ('potato'), causing several comorbidities which are characterized as preventable non-communicable diseases. Persistent [[body fat excess]] associated with deficits of physical activity induces a weight-lifting effect on increasing muscle mass with decreasing mitochondrial capacity. Body fat excess, therefore, correlates with [[body mass excess]] up to a critical stage of obesogenic lifestyle-induced [[sarcopenia]], when loss of muscle mass results in further deterioration of physical performance particularly at older age.cal performance particularly at older age.)
  • OctGM  + ('''OctGM''': [[Octanoylcarnitine]] & [[Glutamate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-015]], [[SUIT-016]], [[SUIT-017]])
  • OctGMS  + ('''OctGMS''': [[Octanoylcarnitine]] &[[Glutamate]] & [[Malate]]& [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocols:''' [[SUIT-016]], [[SUIT-017]])
  • OctM pathway control state  + ('''OctM''': [[Octanoylcarnitine]]'''OctM''': [[Octanoylcarnitine]] & [[Malate]].</br></br>'''MitoPathway control state:''' F</br></br>'''SUIT protocols:''' [[SUIT-002]], [[SUIT-015]], [[SUIT-016]], [[SUIT-017]]</br></br>Respiratory stimulation of the [[Fatty acid oxidation pathway control state| FAO-pathway]], F, by [[fatty acid]] FA in the presence of [[malate]] M. Malate is a [[NADH Electron transfer-pathway state |type N substrate]] (N), required for the F-pathway. In the presence of [[Malate-anaplerotic pathway control state|anaplerotic pathways]] (''e.g.'', [[Malic enzyme|mitochondrial malic enzyme, mtME]]) the F-pathway capacity is overestimated, if there is an added contribution of NADH-linked respiration, F(N) (see [[SUIT-002]]). The FA concentration has to be optimized to saturate the [[Fatty acid oxidation pathway control state| FAO-pathway]], without inhibiting or uncoupling respiration. Low concentration of [[malate]], typically 0.1 mM, does not saturate the [[N-pathway]]; but saturates the [[Fatty acid oxidation pathway control state |F-pathway]]. High concentration of [[malate]], typically 2 mM, saturates the [[N-pathway]].[[N-pathway]].)
  • OctPGM pathway control state  + ('''OctPGM''': [[Octanoylcarnitine]]'''OctPGM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocols:''' [[SUIT-002]]</br>:This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<1 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate and glutamate is added to compare FAO as the background state with FN as the reference state.O as the background state with FN as the reference state.)
  • OctPGMS pathway control state  + ('''OctPGMS''': [[Octanoylcarnitine]]'''OctPGMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]].</br></br>'''MitoPathway control state:''' [[FNS]]</br></br>'''SUIT protocol:''' [[SUIT-001]], [[SUIT-002]], [[SUIT-015]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPGMSGp pathway control state  + ('''OctPGMSGp''': [[Octanoylcarnitine]]'''OctPGMSGp''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]].</br></br>'''MitoPathway control state:''' FNSGp</br></br>'''SUIT protocol:''' [[SUIT-002]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPM pathway control state  + ('''OctPM''': [[Octanoylcarnitine]]'''OctPM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocol:''' [[SUIT-002]], [[SUIT-005]]</br></br>This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<0 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate is added to compare FAO as the background state with FN as the reference state. the background state with FN as the reference state.)
  • OctPMS  + ('''OctPMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]] & [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocol:''' [[SUIT-005]])
  • Octanoate  + ('''Octanoate''' (octanoic acid). C<sub>8</sub>H<sub>16</sub>O<sub>2</sub> Common name: Caprylic acid.)
  • Octanoylcarnitine  + ('''Octanoylcarnitine''' is a medium-chain fatty acid (octanoic acid: eight-carbon saturated fatty acid) covalently linked to [[carnitine]], frequently applied as a substrate for [[fatty acid oxidation]] (FAO) in [[mitochondrial preparations]].)
  • Oligomycin  + ('''Oligomycin''' (Omy) is an inhibitor of '''Oligomycin''' (Omy) is an inhibitor of [[ATP synthase]] by blocking its proton channel (Fo subunit), which is necessary for oxidative phosphorylation of ADP to ATP (energy production). The inhibition of ATP synthesis also inhibits respiration. In OXPHOS analysis, Omy is used to induce a [[LEAK respiration]] state of respiration (abbreviated as ''L''(Omy) to differentiate from ''L''(n), LEAK state in the absence of ADP).L''(n), LEAK state in the absence of ADP).)
  • Optics  + ('''Optics''' are the components that are u'''Optics''' are the components that are used to relay and focus light through a [[spectrofluorometer]] or [[spectrophotometer]]. These would normally consist of lenses and/or concave mirrors. The number of such components should be kept to a minimum due to the losses of light (5-10%) that occur at each surface. light (5-10%) that occur at each surface.)
  • Ouabain  + ('''Ouabain''' (synonym: G-strophantin octa'''Ouabain''' (synonym: G-strophantin octahydrate) is a poisonous cardiac glycoside. The classical mechanism of action of ouabain involves its binding to and inhibition of the plasma membrane Na+/K+-ATPase (sodium pump) especially at the higher concentrations. Low (nanomolar and subnanomolar) concentrations of ouabain stimulate the Na-K-ATPase.ions of ouabain stimulate the Na-K-ATPase.)
  • Overfitting  + ('''Overfitting''' in statistics is the act'''Overfitting''' in statistics is the act of mistaking noise for a signal. Overfitting makes a model look ‘’better’’ on paper but perform ‘’worse’’ in the real world. This may make it easier to get the model published in an academic journal or to sell to a client, crowding out more honest models from the marketplace. But if the model is fitting noise, it has the potential to hurt the science (quoted from [[Silver 2012 Penguin Press]]).nguin Press]]).)
  • Overlay of plots - DatLab  + ('''Overlay of plots''' is defined in DatLa'''Overlay of plots''' is defined in DatLab as selection of graph layouts showing identical plots from the two O2k-chambers in each graph. Overlay of plots is selected in [[Graph layout - DatLab |Graph layout]]. Superimposed traces of flux/flow from chambers A and B are then shown in Graph 1, and of concentration in chambers A and B in Graph 2.</br></br>There are basically two ways to superimpose traces recorded in different experiments: Export of the graphics via windows metafile or export of the data to e.g. a spreadsheet program.</br></br>If you export via wmf you also can manipulate the graphics but then usually the lines are broken up in different segments. This can be done in various programs like MS Word, Open Office Draw and even in MSPower Point, though this maybe is the worst program to do this. It is better to manipulate them in a proper program like OO Draw, convert it to an unchangeable picture and then import it to a presentation graphics. Anyway, when you import directly to Power point (or other programs), make sure not to import it as a "picture" but as a metafile. Also in some programs you might afterwards have to "break" it up, or accept a "conversion to a MS Draw object" or other similar linguistic inventions of the software gurus. For this option we suggest to do as much as possible directly in DatLab (setting colors, line widths, ..) using the options in "Plots"/"select plots" and "graph"/"options". </br></br>The “hardcore“ option is to export the data and import it into e.g. a spreadsheet program (MS Excel , OOCalc). It takes longer to have a simple overlay but gives you far less problems later and its easier to make changes later. To do this you can export your dataset "Export"/"Data to Textfile" and then go from there."Data to Textfile" and then go from there.)
  • Oxalomalic acid  + ('''Oxalomalic acid''' is an inhibitor of a'''Oxalomalic acid''' is an inhibitor of aconitase (and of cytoplasmic NADP-dependent isocitrate dehydrogenase). Aconitase mediates the isomerization of citrate to isocitrate as the first step in the [[TCA_cycle| TCA cycle]]. Oxalomalic acid has been used at 1 mM concentration and after 45 min of pre-incubation to inhibit aconitase in permeabilized rat Soleus muscle fibres, inhibiting the enzyme by 24% ([[Osiki 2016 FASEB J]]).[[Osiki 2016 FASEB J]]).)
  • Oxidative stress  + ('''Oxidative stress''' results from an imb'''Oxidative stress''' results from an imbalance between pro-oxidants and antioxidants shifting the equilibrium in favor of the pro-oxidants. This process can be due by an increment in pro-oxidants, by a depletion of antioxidant systems or both. Oxidative stress generates oxidative damage of proteins, lipids and DNA.dative damage of proteins, lipids and DNA.)
 ('''Oxidative stress''' results from an imbalance between pro-oxidants an)
  • Oxoglutarate dehydrogenase  + ('''Oxoglutarate dehydrogenase''' (α-ketogl'''Oxoglutarate dehydrogenase''' (α-ketoglutarate dehydrogenase) is a highly regulated enzyme of the [[tricarboxylic acid cycle]]. It catalyses the conversion of oxoglutarate (alpha-ketoglutarate) to succinyl-CoA, reduces NAD<sup>+</sup> to [[NADH]] and thus links to [[Complex I]] in the Electron transfer-pathway. OgDH is activated by low Ca<sup>2+</sup> (<20 µM) but inactivated by high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.y high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.)
  • Oxygen flux  + ('''Oxygen flux''', ''J''<sub>O<su'''Oxygen flux''', ''J''<sub>O<sub>2</sub></sub>, is a [[specific quantity]]. Oxygen [[flux]] is [[oxygen flow]], ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup> per system] (an [[extensive quantity]]), divided by system size. Flux may be volume-specific (flow per volume [pmol·s<sup>-1</sup>·mL<sup>-1</sup>]), mass-specific (flow per mass [pmol·s<sup>-1</sup>·mg<sup>-1</sup>]), or marker-specific (flow per mtEU). Oxygen flux (''e.g.'', per body mass, or per cell volume) is distinguished from oxygen flow (per number of objects, such as cells), ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup>·x<sup>-1</sup>]. These are different forms of [[normalization of rate]].lization of rate]].)
  • Oxygen kinetics  + ('''Oxygen kinetics''' describes the depend'''Oxygen kinetics''' describes the dependence of respiration of isolated mitochondria or cells on oxygen partial pressure. Frequently, a strictly hyperbolic kinetics is observed, with two parameters, the oxygen pressure at half-maximum flux, ''p''<sub>50</sub>, and maximum flux, Jmax. The ''p''<sub>50</sub> is in the range of 0.2 to 0.8 kPa for cytochrome ''c'' oxidase, isolated mitochondria and small cells, strongly dependent on ''J''<sub>max</sub> and coupling state.lls, strongly dependent on ''J''<sub>max</sub> and coupling state.)
  • Oxygen pressure  + ('''Oxygen pressure''' or partial [[pressure]] of oxygen [kPa], related to oxygen concentration in solution by the [[oxygen solubility]], ''S''<sub>O2</sub> [µM/kPa].)
  • Ap5A  + ('''P1,P5-Di(adenosine-5')pentaphosphate (Ap5A)''' is an inhibitor of [[adenylate kinase]] (ADK), the enzyme which rephosphorylates AMP to ADP, consuming ATP (ATP + AMP ↔ 2 ADP).)
  • PGMSGp pathway control state  + ('''PGMSGp''': [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]]. '''MitoPathway control state:''' NSGp '''SUIT protocol:''' [[SUIT-038]] This substrate combination supports convergent electron flow to the [[Q-junction]].)
  • POS-Service Kit  + ('''POS-Service Kit''', in [[O2k-Accessory Box]] including all oxygen sensor service accessories for membrane mounting and service of the [[OroboPOS|POS]].)
  • PREreview  + ('''PREreview''' encourages scientists to p'''PREreview''' encourages scientists to post their scientific outputs as preprints. PREreview makes it easier to start and run a Preprint Journal Club, or integrate preprint review into conventional journal clubs. PREreview seeks to diversify peer review in the academic community by crowdsourcing pre-publication feedback to improve the quality of published scientific output, and to train early-career researchers (ECRs) in how to review others' scientific work. We want to facilitate a cultural shift in which every scientist posts, reads, and engages with preprints as standard practice in scholarly publishing. We see PREreview as a hub to support and nurture the growth of a community that openly exchanges timely, constructive feedback on emerging scientific outputs. We believe that by empowering ECRs through peer review training programs, thereby increasing the diversity of researchers involved in the peer review process, PREreview will help establish a healthier and more sustainable culture around research dissemination and evaluation. This project was born in April 2017 as a collaboration between Samantha Hindle and Daniela Saderi, scientists and [[ASAPbio]] Ambassadors, with help from Josh Nicholson, at the time working for [https://www.authorea.com/aboutus Authorea].ttps://www.authorea.com/aboutus Authorea].)
  • Packing\O2k-Box 1+2  + ('''Packing\O2k-Box 1+2''' for shipping the [[O2k-Core]]. O2k-WorldWide delivery, insurance and handling are included in the O2k-Core.)
  • PalM  + ('''PalM''': [[Palmitoylcarnitine]] & [[Malate]]. '''MitoPathway control state:''' [[ F | Fatty acid oxidation pathway control state]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctM  + ('''PalOctM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Malate]]. '''MitoPathway control state:''' [[ F | Fatty acid oxidation pathway control state]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPGM  + ('''PalOctPGM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPGMS  + ('''PalOctPGMS''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPM  + ('''PalOctPM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-019]])
  • PalPGMSGp pathway control state  + ('''PalPGMSGp''': [[Palmitoylcarnitine]]'''PalPGMSGp''': [[Palmitoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]].</br></br>'''MitoPathway control state:''' FNSGp</br></br>'''SUIT protocol:''' [[SUIT-026]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • Palmitate  + ('''Palmitate''' is a term for the salts an'''Palmitate''' is a term for the salts and esters of palmitic acid (CH<sub>3</sub>(CH<sub>2</sub>)<sub>14</sub>COOH). Palmitic acid is the first fatty acid produced during fatty acid synthesis and the precursor to longer fatty acids. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC), which is responsible for converting acetyl-CoA to malonyl-CoA, which in turn is used to add to the growing acyl chain, thus preventing further palmitate generation. In order to dissolve the water-insoluble sodium palmitate, [[Bovine serum albumine| BSA]] is needed to form the water-soluble compound called palmitate:BSA.[[Bovine serum albumine| BSA]] is needed to form the water-soluble compound called palmitate:BSA.)
  • Palmitoyl-CoA  + ('''Palmitoyl-CoA''' is a coenzyme A deriva'''Palmitoyl-CoA''' is a coenzyme A derivative of palmitate formed by acyl-CoA synthase. In contrast to medium- and short-chain acyl-CoA, palmitoyl-CoA cannot freely diffuse into the mitochondrial matrix. Formation of palmitoylcarnitine by CPTI is necessary prior to transfer into mitochondria for further fatty acid oxidation (β-oxidation). To study [[Fatty acid oxidation]] using Palmitoyl-CoA, [[Carnitine]] and low amount of malate is needed on mitochondrial preparations.e is needed on mitochondrial preparations.)
  • Palmitoylcarnitine  + ('''Palmitoylcarnitine''' is an ester deriv'''Palmitoylcarnitine''' is an ester derivative of [[carnitine]] (long-chain acylcarnitine) involved in the metabolism of fatty acids. Within the cell, palmitoylcarnitine is transported into the mitochondria to deliver palmitate for fatty acid oxidation and energy production.atty acid oxidation and energy production.)
  • Pathway control efficiency  + ('''Pathway control efficiencies''' are [[flux control efficiency |flux control efficiencies]]'''Pathway control efficiencies''' are [[flux control efficiency |flux control efficiencies]], expressing the relative change of flux in response to a transition between two [[electron-transfer-pathway state]]s due to a change of (''1'') substrate availability or (''2'') inhibition of enzyme steps in the pathway, in a defined [[coupling-control state]].[[coupling-control state]].)
  • Peer review  + ('''Peer reviews''' provide a critical asse'''Peer reviews''' provide a critical assessment of a manuscript prior to publication. Bioenergetics Communications publishes [https://www.bioenergetics-communications.org/index.php/bec/BECPolicies#Permanency_of_content.2C_peer-review_process.2C_and_Journal.27s_options_for_post-publication_discussions_and_corrections Open Peer Reviews] for transparency of the review process.s] for transparency of the review process.)
  • PeerJ Preprints 'pre-print' area of PeerJ  + ('''PeerJ Preprints''' is the 'pre-print' a'''PeerJ Preprints''' is the 'pre-print' area of the Open Access journal ''PeerJ''. Similar to preprint servers that already exist (for example arXiv.org), authors can submit draft, incomplete, or final versions of articles they are working on. By using this service, authors establish precedent; they can solicit feedback; and they can work on revisions of their manuscript. Once they are ready, they can submit their preprint article into ''PeerJ'' (although it is not a requirement to do so).</br></br>''PeerJ Preprints'' was launched in April 2013. It only accepts submissions in the same subject areas as ''PeerJ'' (biological, medical and environmental sciences) and ''PeerJ Computer Science''. In order to submit to ''PeerJ Preprints'', at least the submitting author must have a user account with ''PeerJ''. There is no pre-publication peer-review of submissions; however we do perform basic checks to ensure conformity with our policies. Submissions are made using the same platform as with the peer-reviewed journals, although some of the requirements are less stringent. Articles are not typeset, but we do provide automated conversion into PDF. The default is for a ''PeerJ Preprints'' publication to be fully open to all viewers (what we call a 'public' pre-print).</br></br>'''PeerJ''' is an Open Access, peer-reviewed, scholarly journal. It considers and publishes research articles in the biological, medical and environmental sciences. It aims for rapid decision making and will publish articles as soon as they are ready. ''PeerJ'' is based in both San Diego, US, and London, UK.sed in both San Diego, US, and London, UK.)
  • Perfluorooctanoic acid  + ('''Perfluorooctanoic acid''' (PFOA) is a metabolically inert perfluorinated fatty acid which activates [[UCP1]] in brown-fat mitochondria. UCP1-dependent respiration can be stimulated with 600 μM PFOA after inhibition of the phosphorylation system.)
  • Performance Estimation  + ('''Performance estimation''')
  • PBMC  + ('''Peripheral blood mononuclear cells''' ('''Peripheral blood mononuclear cells''' (PBMC) are a fraction of the leucocyte population in the blood composed by cells with round nucleus. PBMC consist of lymphocytes (T, B and NK cells) and monocytes. During extraction, neutrophils and platelets (PLT) can be found in the PBMC fraction, where PLT are considered as a contamination.ere PLT are considered as a contamination.)
  • Permeabilized cells  + ('''Permeabilized cells''' (pce) are mitoch'''Permeabilized cells''' (pce) are mitochondrial preparations obtained by selectively permeabilizing the plasma membrane (e.g., with [[digitonin]]), for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.</br></br>'''Permeabilized cells''' (pce) are, therefore, not any longer viable or [[living cells]] (ce), since the intactness of cells implies the intactness of the plasma membrane. Any typical quantiative cell viability test (trypan blue etc) evaluating the intactness of the plasma membrane, yields a 100% negative result on fully permeabilized cells.</br></br>For permeabilizing the cell plasma membranes chemically with [[digitonin]], without damaging the [[mitochondrial|mt]]-membranes, the optimum concentration of digitonin must be previously determinated. The protocol [[SUIT-010]] is designed for the evaluation of optimum digitonin concentration for permeabilizing cells, a requirement to account for differences between cell types, the concentration of cells, and variability between batches of the natural product digitonin. batches of the natural product digitonin.)