Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "Mitochondrial respiratory capacity and control are compared in different". Since there have been only a few results, also nearby values are displayed.

Showing below up to 25 results starting with #1.

View (previous 50 | next 50) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Electron transfer pathway  + (In the mitochondrial '''electron transfer In the mitochondrial '''electron transfer pathway''' (ET pathway) electrons are transferred from externally supplied reduced fuel substrates to oxygen. Based on this experimentally oriented definition (see [[ET capacity]]), the ET pathway consists of (1) the [[membrane-bound ET pathway]] with respiratory complexes located in the inner mt-membrane, (2) [[TCA cycle]] and other mt-matrix dehydrogenases generating NADH and succinate, and (3) the carriers involved in metabolite transport across the mt-membranes.</br>» [[#Electron transfer pathway versus electron transport chain |'''MiPNet article''']][#Electron transfer pathway versus electron transport chain |'''MiPNet article''']])
  • Select plots - DatLab  + (In the pull-down menue [Graph], '''Select In the pull-down menue [Graph], '''Select plots''' opens the Graph layout window 'Plots'. For each graph, the plots shown with the Y1 or Y2 axis can be selected, axis labels and line styles can be defined, the unit for the calibrated signal can be changed, Flux/Slope can be chosen to be displayed as Flux per volume or as normalized specific flux/flow, the background correction can be switched on or off, and the channel can be selectively displayed as the raw signal. Graph layouts can be selected and loaded or a Graph layout may be saved. </br>»''Compare:'' [[Scaling - DatLab]].[Scaling - DatLab]].)
  • Limiting pO2  + (In the transition from aerobic to [[anaerobic | anaerobic metabolism]]In the transition from aerobic to [[anaerobic | anaerobic metabolism]], there is a limiting ''p''<sub>O2</sub>, ''p''<sub>lim</sub>, below which anaerobic energy flux is switched on and [[Calorespirometric ratio|CR ratios]] become more exothermic than the [[oxycaloric equivalent]]. ''p''<sub>lim</sub> may be significanlty below the [[critical pO2|critical ''p''<sub>O2</sub>]].[[critical pO2|critical ''p''<sub>O2</sub>]].)
  • Transmission spectrophotometry  + (In the transmission mode, the incident light passes through the sample [[cuvettes]] and the emergent light reaches the [[detector]] directly. Before [[absorbance]] measurements can be made, a [[balance]] is carried out.)
  • Sample - DatLab 7  + (In the window '''Sample''', information isIn the window '''Sample''', information is entered and displayed for the sample (Sample type, Cohort, Sample code, Sample number, Subsample number and sample concentration). Entries can be edited any time during the experiment in real-time or during post-experiment analysis. All related results are recalculated instantaneously with the new parameters. Initially, the Edit experiment window displays information from the last file recorded and saved while connected to the O2k.rded and saved while connected to the O2k.)
  • Balance  + (In transmission spectrophotometry [[blank]]In transmission spectrophotometry [[blank]] [[cuvettes]] are used to record the [[incident light]] intensity (''I''<sub>''0''</sub>) prior to absorbance measurements. (See [[white balance]] for [[reflectance spectrophotometry]], [[remittance spectrophotometry]]).[[remittance spectrophotometry]]).)
  • Instrumental: Browse DL-Protocols and templates  + (Instrumental [[Run DL-Protocol/Set O2 limit| DL-Protocols]]Instrumental [[Run DL-Protocol/Set O2 limit| DL-Protocols]] (DLP) including DatLab example traces, instructions, brief explanatory texts, links to relevant pages and templates for data evaluation can be browsed from inside DatLab 7.4. Click on menu [Protocols]\Instrumental: Browse DL-Protocols and templates to open a folder with all the [[Run DL-Protocol/Set O2 limit| DL-Protocols]] and templates for cleaning, calibration, and background determination provided with the DatLab 7.4. Select a sub-directory and open an DL-Protocol and/or template as desired.an DL-Protocol and/or template as desired.)
  • Mitochondrial respiration  + (Integrative measure of the dynamics of comIntegrative measure of the dynamics of complex coupled metabolic pathways, including metabolite transport across the mt-membranes, [[TCA cycle]] function with electron transfer through dehydrogenases in the mt-matrix, membrane-bound electron transfer [[Membrane-bound ET pathway|mET-pathway]], the transmembrane proton circuit, and the phosphorylation system.n circuit, and the phosphorylation system.)
  • Intensive quantity  + (Intensive quantities are partial derivativIntensive quantities are partial derivatives of an extensive quantity by the advancement, d<sub>tr</sub>''ξ''<sub>''X''</sub>, of an energy transformation tr; ''example:'' [[Force]]. In contrast to [[extensive quantity |extensive quantities]] which pertain to the entire system and are additive, extensive quantities 'take well defined values at each point of the system' ([[Prigogine 1967 Interscience]]) and are non-additive. Intensive and extensive quantities can be easily discriminated by the units, e.g. [J] for the extensive quantity, in contrast to [J·mol<sup>-1</sup>] for the corresponding intensive quantity. In the general definition of thermodynamics, intensive quantities are not distinguished from [[specific quantity |specific quantities]] ([[Cohen 2008 IUPAC Green Book]]). [[Ergodynamics]] emphasizes the contrast between specific quantities which are extensive quantities normalized for a variable expressing system size (mass, volume of the system, amount of substance in a system) and intensive quantities which are normalized for the motive unit of a transformation (mass exchanged, volume change of the system, amount of substance reacting in a system; [[Gnaiger 1993 Pure Appl Chem]]). Intensive and specific quantities are both non-additive, take well defined values at each point of the system, and both corresponding quantities are expressed in identical units, e.g. the intensive quantity Gibbs force of a catabolic reaction (such as oxidation; 0 = -1 Glc - 6 O<sub>2</sub> + 6 CO<sub>2</sub> + 6 H<sub>2</sub>O), Δ<sub>k</sub>''G''<sub>Glc</sub> [kJ·mol<sup>-1</sup>], and the specific quantity Gibbs energy per mole glucose contained in a system, ''G''<sub>Glc</sub> [kJ·mol<sup>-1</sup>] (with respect to an arbitrarily defined reference state, such as the reference state of formation or combustion).<sub>Glc</sub> [kJ·mol<sup>-1</sup>] (with respect to an arbitrarily defined reference state, such as the reference state of formation or combustion).)
  • Statistical significance  + (It is advisable to replace levels of '''statistical significance''' (*, **, ***) by simply stating the actual ''p''-values.)
  • OSF Preprint server  + (Leading preprint service providers use '''Leading preprint service providers use '''OSF Preprints''' as an open source infrastructure to support their communities. You should upload your preprint to whichever preprint server best fits your topic and the community that you would like to reach. If there isn’t a community-driven preprint server for your discipline, OSF Preprints is available for any discipline. Currently, you can only share your preprint on one community preprint server. It’s on our roadmap to allow users to submit a preprint to multiple community preprint servers. However, to improve discoverability across communities, all preprints shared on OSF Preprints and community preprint servers are indexed and searchable via osf.io/preprints. Right now, it is not possible to add subjects. However, you can add tags with additional subject areas or keywords to improve discoverability. COS supports communities operating their own branded community preprint services using OSF Preprints as the backend.OSF is based in Charlottesville, VA, USA..OSF is based in Charlottesville, VA, USA.)
  • Sarcopenia  + (Low muscle strength is a key characteristic of '''sarcopenia''' due to low muscle quantity and quality, with poor physical performance at severe sarcopenia. Older age may be defined as the age group when sarcopenia becomes a common burden.)
  • Superoxide dismutase  + (Mammalian '''superoxide dismutase''' (SOD)Mammalian '''superoxide dismutase''' (SOD) exists in three forms, of which the Mn-SOD occurs in mitochondria (mtSOD, SOD2; 93 kD homotetramer) and many bacteria, in contrast to the Cu-Zn forms of SOD (cytosolic SOD1, extracellular SOD3 anchored to the extracellular matrix and cell surface). [[Superoxide]] anion (O<sub>2</sub><sup>•-</sup>) is a major [[reactive oxygen species]] (ROS) which is dismutated by SOD to [[oxygen]] and [[hydrogen peroxide | H<sub>2</sub>O<sub>2</sub>]].hydrogen peroxide | H<sub>2</sub>O<sub>2</sub>]].)
  • Manuscript template for MitoFit Preprints  + (Manuscripts template for [[MitoFit Preprints]] and [[Bioenergetics Communications]].)
  • Attached cells  + (Many cell types are grown in culture as '''attached cells''', such as endothelial or neuronal cells in a monolayer.)
  • Metabolic control analysis  + (Metabolic control analysis is a science foMetabolic control analysis is a science focused on the understanding of metabolic regulation and control. In metabolism, the reductionist approach has allowed us to know which enzymes, metabolites and genes are involved in a metabolic pathway but this is not enough to understand how it is controlled, resulting in poor results from attempts to increase the rates of selected metabolic pathways. The control of the metabolism is the capacity to alter the metabolic state in response to an external signal. With this definition in mind, we will assess the metabolic control in terms of the strength of any of the responses to the external factor without making the assumption about the function or purpose of that response[1].</br></br>====Bibliography:====</br></br>::1. David Fell. Frontiers in metabolism 2. Understanding the control of metabolism. Portland Press. 1997.ntrol of metabolism. Portland Press. 1997.)
  • MiPNet-Publication  + (MiPNet is the abbreviation for the OROBOROS Journal '''Mitochondrial Physiology Network''', including chapters of the [[O2k-Manual]], [[O2k-Procedures]], [[O2k-Workshops]], and other announcements, starting with MiPNet 01 in 1996. See also »[[MiPNet]].)
  • Communication - mitochondria and the patient  + (Mitochondria and the patient: communication between patients, medical professionals, scientists, and the public)
  • Substrate-uncoupler-inhibitor titration  + (Mitochondrial '''Substrate-uncoupler-inhibMitochondrial '''Substrate-uncoupler-inhibitor titration''' ('''SUIT''') [[MitoPedia: SUIT |protocols]] are used with [[mitochondrial preparations]] to study respiratory control in a sequence of coupling and substrates states induced by multiple titrations within a single experimental [[assay]].[[assay]].)
  • Hydrogen ion pump  + (Mitochondrial '''hydrogen ion pumps''' — fMitochondrial '''hydrogen ion pumps''' — frequently referred to as "proton pumps" — are large enzyme complexes (CI, CIII, CIV, ATP synthase) spanning the mt-inner membrane mtIM, partially encoded by mtDNA. [[Complex I|CI]], [[CIII]] and [[CIV]] are H<sup>+</sup> pumps that drive [[hydrogen ion]]s against the electrochemical [[protonmotive force]] ''pmF'' and thus generating the ''pmF'', driven by electron transfer from reduced substrates to oxygen. In contrast, [[ATP synthase]] (also known as CV) is a H<sup>+</sup> pump that utilizes the exergy of proton flow along the protonmotive force to drive phosphorylation of [[ADP]] to [[ATP]].P]].)
  • Malate dehydrogenase  + (Mitochondrial '''malate dehydrogenase''' iMitochondrial '''malate dehydrogenase''' is localized in the mitochondrial matrix and oxidizes [[malate]], generated from fumarate by fumarase, to [[oxaloacetate]], reducing NAD<sup>+</sup> to NADH+H<sup>+</sup> in the [[TCA cycle]]. Malate is added as a substrate in most [[N-pathway control state]]s.[[N-pathway control state]]s.)
  • Proton pump  + (Mitochondrial '''proton pumps''' are largeMitochondrial '''proton pumps''' are large enzyme complexes (CI, CIII, CIV, CV) spanning the inner mt-membrane, partially encoded by mtDNA. [[Complex I|CI]], [[CIII]] and [[CIV]] are proton pumps that drive [[proton]]s against the electrochemical [[protonmotive force]], driven by electron transfer from reduced substrates to oxygen. In contrast, [[ATP synthase]] (also known as CIV) is a proton pump that utilizes the energy of proton flow along the protonmotive force to drive phosphorylation of [[ADP]] to [[ATP]].[[ATP]].)
  • MiR06Cr  + (Mitochondrial respiration medium, '''MiR06Cr''', developed for oxygraph incubations of mitochondrial preparations - ''[[permeabilized muscle fibers]]''. MiR06Cr = [[MiR06]] + 20 mM [[Creatine|creatine]].)
  • MiR05Cr  + (Mitochondrial respiration medium, '''MiR05Cr''', developed for oxygraph incubations of mitochondrial preparations - ''[[permeabilized muscle fibers]]''. MiR05Cr = [[MiR05]] + 20 mM [[Creatine|creatine]].)
  • Mitochondrial respiration media: comparison  + (Mitochondrial respiratory capacity and conMitochondrial respiratory capacity and control are compared in different '''mitochondrial respiration media''', MiRs, to evaluate the quality of MiRs in preserving mitochondrial function and to harmonize results obtained in various studies using different MiRs. In some cases alterations of the formulation are incorporated to optimize conditions for the simultaneous measurement of multiple parameters, e.g. respiration and [[ROS]] production.[[ROS]] production.)
 (Mitochondrial respiratory capacity and control are compared in different)
  • Hydrogen  + (Molecular '''hydrogen''' H<sub>2<Molecular '''hydrogen''' H<sub>2</sub> is a constituent of the air with a volume fraction of 0.00005. It is a colorless and odorless gas with a molecular mass of 2.016. Its pharmacological potential and effects on mitochondrial metabolism are discussed in various publications without complete evidence on the underlying mechanisms.ithout complete evidence on the underlying mechanisms.)
  • Scattering  + (Most biological samples do not consist simMost biological samples do not consist simply of pigments but also particles (e.g. cells, fibres, mitochondria) which scatter the [[incident light]]. The effect of '''scattering''' is an apparent increase in [[absorbance]] due to an increase in pathlength and the loss of light scattered in directions other than that of the detector. Two types of scattering are encountered. For incident light of wavelength ''λ'', Rayleigh scattering is due to particles of diameter < ''λ'' (molecules, sub-cellular particles). The intensity of scatter light is proportional to ''λ''<sup>4</sup> and is predominantly backward scattering. Mie scattering is caused by particles of diameter of the order of or greater than ''λ'' (tissue cells). The intensity of scatter light is proportional to 1/''λ'' and is predominantly forward scattering.ional to 1/''λ'' and is predominantly forward scattering.)
  • Volume of the solute  + (Most of the chemicals for SUIT protocol tiMost of the chemicals for SUIT protocol titrations are prepared by weighing the substance on the balance, transferring to a volumetric glass flask and adding solvent until the intended volume is reached. However, for practical reasons some of the chemical compounds are prepared by just adding the solvent instead of adjusting it's volume. For example, this approach is useful if the substance is very toxic. Then an arbitratry amount is taken, its mass determined on the balance without trying to reach a specific value and the necessary amount of solvent is added. Adding the solvent instead of adjusting its volume is also useful if small amounts are needed (e.g. 1 mL) or if the compound has to be prepared directly before using it like Pyruvate. In these cases the volume contributed by the solute was tested.lume contributed by the solute was tested.)
  • Carrier control titrations  + (Most of the nonpolar compounds have to be Most of the nonpolar compounds have to be diluted in organic solvents such as DMSO or acetonitrile in order to use them for the titrations in the SUIT protocols. However, the solvent (carrier) itself could affect the mitochondrial physiology and promote alterations that we need to take into account. For this reason, it is necessary to run in parallel to our treatment experiment a control experiment on which we will add a '''carrier control titration''' to test if it affects our sample or not.' to test if it affects our sample or not.)
  • Q  + (Multiple meanings of Q ::::» [[Coenzyme Q]] Q ::::» [[Charge]] ''Q'', ''Q''<sub>el</sub> ::::» [[Heat]] ''Q'', ''Q''<sub>th</sub>)
  • Nigericin  + (Nigericin is a H<sup>+</sup>/KNigericin is a H<sup>+</sup>/K<sup>+</sup> antiporter, which allows the electroneutral transport of these two ions in opposite directions across the mitochondrial inner membrane following the K<sup>+</sup> concentration gradient. In the presence of K<sup>+</sup>, nigericin decreases pH in the mitchondrial matrix, thus, almost fully collapses the transmembrane ΔpH, which leads to the compensatory increase of the electric [[Mitochondrial membrane potential|mt-membrane potential]]. Therefore, it is ideal to use to dissect the two components of the [[Protonmotive force|protonmotive force]], ΔpH and [[Mitochondrial membrane potential|mt-membrane potential]]. It is recommended to use the lowest possible concentration of nigericin, which creates a maximal mitochondrial hyperpolarization. In the study of [[Komlodi 2018 J Bioenerg Biomembr]], 20 nM was applied on brain mitochondria isolated from guinea-pigs using 5 mM [[Succinate|succinate]] in the [[LEAK respiration|LEAK state]] which caused maximum hyperpolarisation, but did not fully dissipate the transmembrane ΔpH. Other groups (Selivanov et al 2008; Lambert et al 2004), however, used 100 nM nigericin, which in their hands fully collapsed transmembrane ΔpH using succinate as a respiratory substrate on isolated rat brain and skeletal muscle in the [[LEAK respiration|LEAK state]].AK respiration|LEAK state]].)
  • Viruses and mitochondrial medicine  + (Not enough is known about '''viruses and mitochondrial medicine''', although several studies point towards a link between viral infection and mitochondrial dysfunction using high-resolution respirometry, with potential impact on drug development.)
  • Nuclear receptors  + (Nuclear receptors are ligand-dependent transcription factors.)
  • Equivalence  + (Numerical '''equivalence''' (symbol ≡) indicates that two quantities are numerically equal, even if the full meaning may be different. For instance: 1 ≡ 1·1 and 1 ≡ 1/1. In contrast to ≡, the symbol = indicates physicochemical [[equality]].)
  • O2k-Virtual Support  + (O2k-Virtual support includes 8 individual O2k-Virtual support includes 8 individual hours. Via a live video link, Oroboros experts guide you step-by-step on topics of your choice, such as O2k instrumental setup and service of the polarographic oxygen sensors (POS) for instrumental quality control, an essential component of HRR. This offers the opportunity to analyze and discuss your experimental [[DatLab]] files obtained with your O2k with the bioenergetics experts of Oroboros. It offers flexibility to participants and gives the option to choose virtual sessions that best fit individual needs.l sessions that best fit individual needs.)
  • BME cutoff points  + (Obesity is defined as a disease associatedObesity is defined as a disease associated with an excess of body fat with respect to a healthy reference condition. Cutoff points for [[body mass excess]], '''BME cutoff points''', define the critical values for underweight (-0.1 and -0.2), overweight (0.2), and various degrees of obesity (0.4, 0.6, 0.8, and above). BME cutoffs are calibrated by crossover-points of BME with established BMI cutoffs.oints of BME with established BMI cutoffs.)
  • Creative Commons Attribution License  + (Open Access preprints (not peer-reviewed) Open Access preprints (not peer-reviewed) and articles (peer-reviewed) distributed under the terms of the '''Creative Commons Attribution License''' allow unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. © remains with the authors, who have granted the publisher license in perpetuity.anted the publisher license in perpetuity.)
  • Open - DatLab  + (Open a previously recorded [[DatLab]] file.)
  • Internationale Gesellschaft fuer Regenerative Mitochondrien-Medizin  + (Organizer of * [http://bioblast.at/index.Organizer of </br>* [http://bioblast.at/index.php/Klinische_MitochondrienMedizin_und_Umweltmedizin_2015 Klinische MitochondrienMedizin und Umweltmedizin 2015]</br>* [http://wiki.oroboros.at/index.php/Klinische_MitochondrienMedizin_und_Umweltmedizin_2016_Heidelberg_DE Klinische MitochondrienMedizin und Umweltmedizin 2016]</br>* [http://wiki.oroboros.at/index.php/Klinische_Mitochondrienmedizin_und_Umweltmedizin_2017_Heidelberg_DE Klinische MitochondrienMedizin und Umweltmedizin 2017]</br>* [[Clinical Mitochondria- and Environmental Medicine 2018 Heidelberg DE|Klinische MitochondrienMedizin und Umweltmedizin 2018]][[Clinical Mitochondria- and Environmental Medicine 2018 Heidelberg DE|Klinische MitochondrienMedizin und Umweltmedizin 2018]])
  • Pyruvate dehydrogenase complex  + (Oxidative decarboxylation of pyruvate is catalyzed by the '''pyruvate dehydrogenase complex''' in the mt-matrix, and yields acetyl-CoA.)
  • P/O ratio  + (P/O ratio stands for phosphate to atomic oxygen ratio, where P indicates phosphorylation of ADP to ATP (or GDP to GTP).)
  • Equality  + (Physicochemical '''equality''' (symbol =) indicates in an equation not only numerical [[equivalence]] (symbol ≡), but an identity of the full meaning.)
  • Intracellular oxygen  + (Physiological, '''intracellular oxygen pressure''' is significantly lower than air saturation under normoxia, hence respiratory measurements carried out at air saturation are effectively hyperoxic for cultured cells and isolated mitochondria.)
  • RT  + (RT indicates '''room temperature''' or 25 °C. ''RT'' is the [[gas constant]] ''R'' [kJ/mol] multiplied by absolute [[temperature]] ''T'' [K]. This is the motive force quantum in the amount format ([[Gnaiger 2020 BEC MitoPathways]]).)
  • Warburg effect  + (Recently, controversies had a renaissance Recently, controversies had a renaissance on the much neglected Crabtree effect (aerobic glycolysis in a large range of cells exposed to glucose or fructose, with fully functional mitochondria; Crabtree 1929; Gnaiger and Kemp 1990) versus the '''Warburg effect''' (loss of mitochondrial function inducing cancer and stimulating compensatory aerobic glycolysis in the presence of oxygen; Warburg 1956; see list of references for reviews). Today it is widely accepted that ‘''the Warburg effect is not consistent across all cancer types''’ (Potter et al 2016) and reprogramming of mitochondrial energy metabolism represents a functional adjustment of cancer cells (Schöpf et al 2020).tment of cancer cells (Schöpf et al 2020).)
  • NADH fluorescence  + (Reduced nicotinamide adenine dinucleotide ([[NADH]]) is amongst the [[intrinsic fluorophores]] and can be used as an intracellular indicator of hypoxia. The excitation wavelength is 340 nm and emission is at 460 nm.)
  • 2-Hydroxyglutarate  + (Reduction of [[oxoglutarate]]Reduction of [[oxoglutarate]] (2OG or alpha-ketoglutarate) to '''2-hydroxyglutarate''' (2HG) is driven by NADPH. 2HG is also formed in side reactions of [[lactate dehydrogenase]] and [[malate dehydrogenase]]. Millimolar 2HG concentrations are found in some cancer cells compared to , whereas side activities of lactate and malate dehydrogenase form submillimolar s-2-hydroxyglutarate (s-2HG). However, even wild-type IDH1 and IDH2, notably under shifts toward reductive carboxylation glutaminolysis or changes in other enzymes, lead to “intermediate” 0.01–0.1 mM 2HG levels, for example, in breast carcinoma compared with nanomolar concentrations in benign cells. 2HG is considered an important player in reprogramming metabolism of cancer cells. reprogramming metabolism of cancer cells.)
  • Publicly deposited protocols  + (Researchers need to be introduced into adhResearchers need to be introduced into adhering to '''publicly deposited protocols'''. [[Prespecified protocols |Prespecified]] and [[time-stamped protocols]] that are publicly deposited may help to save Millions of Euros that may otherwise be wasted on research that is lacking coherent standards.search that is lacking coherent standards.)
  • Oxygen flow  + (Respiratory '''oxygen flow''' is the oxygeRespiratory '''oxygen flow''' is the oxygen consumption per total [[system]], which is an [[extensive quantity]]. [[Flow]] is advancement of a transformation in a system per time [mol·s<sup>-1</sup>], when 'system' is defined as the experimental system (e.g. an open or closed chamber). Flow is distinguished from the size-specific quantity [[flux]] obtained by normalization of flow per volume of the experimental system [mol·s<sup>-1</sup>·m<sup>-3</sup>]. An experimental object, e.g. a living cell, may be considered as the 'experimental system'. Then oxygen flow per cell has the unit [mol·s<sup>-1</sup>·x<sup>-1</sup>], where [x] is the [[elementary unit]] for a [[count]]. Oxygen flow or respiration per cell [amol·s<sup>-1</sup>·x<sup>-1</sup>] = [pmol·s<sup>-1</sup>·Mx<sup>-1</sup>] is normalized for the cell count, distinguished from [[oxygen flux]] (e.g. per mg protein or wet mass). These are different forms of [[normalization of rate]].zation of rate]].)
  • Reverse electron flow from CII to CI  + (Reverse electron flow from CII to CI stimuReverse electron flow from CII to CI stimulates production of [[ROS]] when mitochondria are incubated with succinate without rotenone in the LEAK state at a high [[mt-membrane potential]]. Depolarisation of the mt-membrane potential (''e.g.'' after ADP addition to stimulate OXPHOS) leads to inhibition of RET and therefore, decrease of RET-initiated ROS production. RET can be also measured when mitochondria are respiring using [[Glycerophosphate |Gp]] without rotenone in the [[LEAK respiration|LEAK]] state. Addition of I<sub>Q</sub>-side inhibitors (ubiquinone-binding side of CI) of [[Complex I |CI]] usually block RET. The following SUIT protocols allow you to measure RET-initiated H<sub>2</sub>O<sub>2</sub> flux in [[mitochondrial preparations]]: [[SUIT-009]] and [[SUIT-026]].[[SUIT-026]].)