Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Carboxyatractyloside''' CAT is a highly selective and potent inhibito". Since there have been only a few results, also nearby values are displayed.

Showing below up to 10 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • CE  + ('''CE''' marking is a mandatory conformity marking for certain products sold within the European Economic Area (EEA).)
  • CHNO-fuel substrate  + ('''CHNO-fuel substrates''' are reduced car'''CHNO-fuel substrates''' are reduced carbon-hydrogen-nitrogen-oxygen substrates which are oxidized in the [[exergonic]] process of [[cell respiration]]. Mitochondrial pathways are stimulated by CHNO-fuel substrates feeding electrons into the [[ETS]] at different levels of integration and in the presence or absence of inhibitors acting on specific enzymes which are gate-keepers and control various pathway segments.pers and control various pathway segments.)
  • COPE core practices for research  + ('''COPE core practices for research''' are applicable to all involved in publishing scholarly literature.)
  • Calcium  + ('''Ca<sup>2+</sup>''' is a maj'''Ca<sup>2+</sup>''' is a major signaling molecule in both prokaryotes and eukaryotes. Its cytoplasmic concentration is tightly regulated by transporters in the plasma membrane and in the membranes of various organelles. For this purpose, it is either extruded from the cell through exchangers and pumps or stored in organelles such as the endoplasmic reticulum and the mitochondria. Changes in the concentration of the cation regulate numerous enzymes including many involved in ATP utilizing and in ATP generating pathways and thus ultimately control metabolic activity of mitochondria and of the entire cell. Measuring changes in Ca<sup>2+</sup> levels is thus of considerable interest in the context of [[high-resolution respirometry]].[[high-resolution respirometry]].)
  • Calcium Green  + ('''Calcium Green'''<sup>TM</sup&g'''Calcium Green'''<sup>TM</sup> (CaG) denotes a family of [[extrinsic fluorophores]] applied for measurement of Ca<sup>2+</sup> concentration with [[mitochondrial preparations]]. This dye fluoresces when bound to Ca<sup>2+</sup>. When measuring mitochondrial calcium uptake it is possible to observe the increase of the CaG signal upon calcium titration, followed by the decrease of CaG signal due to the uptake.n calcium titration, followed by the decrease of CaG signal due to the uptake.)
  • Calorespirometry  + ('''Calorespirometry''' is the method of me'''Calorespirometry''' is the method of measuring simultaneously metabolic heat flux ([[calorimetry]]) and oxygen flux ([[respirometry]]). The [[calorespirometric ratio]] (CR ratio; heat/oxygen flux ratio) is thus experimentally determined and can be compared with the theoretical [[oxycaloric equivalent]], as a test of the aerobic energy balance., as a test of the aerobic energy balance.)
  • Carbohydrate  + ('''Carbohydrates''', also known as '''sacc'''Carbohydrates''', also known as '''saccharides''', are molecules composed of carbon, hydrogen and oxygen. These molecules can be divided by size and complexity into monosaccharides, disaccharides, oligosaccharides, and polysaccharides. [[Glucose]] is a monosaccharide considered the primary source of energy in cells and a metabolic intermediate. This carbohydrate undergoes glycolysis, with the generation of [[pyruvate]], that can enter the [[TCA cycle]]. </br></br>Carbohydrates such as glucose and fructose may also be involved in the [[Crabtree effect]].[[Crabtree effect]].)
  • Carbonyl cyanide m-chlorophenyl hydrazone  + ('''Carbonyl cyanide m-chlorophenyl hydrazo'''Carbonyl cyanide m-chlorophenyl hydrazone''', CCCP (U; C<sub>9</sub>H<sub>5</sub>ClN<sub>4</sub>; ''F''<sub>W</sub> = 204.62) is a protonophore (H<sup>+</sup> ionophore) and is used as a potent chemical [[uncoupler]] of [[oxidative phosphorylation]]. Like all uncouplers, CCCP concentrations must be titrated carefully to evaluated the optimum concentration for maximum stimulation of mitochondrial respiration, particularly to avoid inhibition of respiration at higher CCCP concentrations.ochondrial respiration, particularly to avoid inhibition of respiration at higher CCCP concentrations.)
  • Carboxy SNARF 1  + ('''Carboxy SNARF® 1''' is a cell-impermean'''Carboxy SNARF® 1''' is a cell-impermeant pH indicator dye. The pKa of ~7.5 makes it useful for measuring pH in the range of pH 7 to pH 8. The emission shifts from yellow-orange at low pH to deep red fluorescence at high pH. Ratiometric fluorometry, therefore, is applied at two emission wavelengths,such as 580 nm and 640 nm.</br></br>Relative molecular mass: ''M''<sub>r</sub> = 453.45molecular mass: ''M''<sub>r</sub> = 453.45)
  • Carboxyatractyloside  + ('''Carboxyatractyloside''' CAT is a highly'''Carboxyatractyloside''' CAT is a highly selective and potent inhibitor of the [[adenine nucleotide translocator]] (ANT). CAT stabilizes the nucleoside binding site of ANT on the cytoplasmic (positive) side of the inner membrane and blocks the exchange of matrix ATP and cytoplasmic ADP. It causes stabilization of the ''c'' conformation of ANT leading to permeability transition pore (PTP) opening, loss of mitochondrial membrane potential, and apoptosis.ondrial membrane potential, and apoptosis.)
 ('''Carboxyatractyloside''' CAT is a highly selective and potent inhibito)
  • Cardiolipin  + ('''Cardiolipin''', CL, is a double phospho'''Cardiolipin''', CL, is a double phospholipid (having 4 fatty acyl chains) in the mitochondrial inner membrane (mtIM) which plays an important role in mitochondrial bioenergetics. CL is involved in the mitochondria-dependent pathway of apoptosis, participates in the function and stabilization of mitochondrial respiratory complexes and supercomplexes and also contributes to mitochondrial integrity.</br> Contributed by [[Sparagna G]] 2016-04-18[[Sparagna G]] 2016-04-18)
  • Carnitine O-octanoyltransferase  + ('''Carnitine O-octanoyltransferase''' is a mitochondrial enzyme that transfers [[carnitine]] to octanoyl-CoA to form [[Coenzyme A]] and [[octanoylcarnitine]]: Octanoyl-CoA + L-carnitine ↔ CoA + L-octanoylcarnitine.)
  • Carnitine acetyltransferase  + ('''Carnitine acetyltransferase''' (CrAT) i'''Carnitine acetyltransferase''' (CrAT) is located in the mitochondrial matrix and catalyses the formation of acetyl-carnitine from acetyl-CoA and L-carnitine and thus regulates the acetyl-CoA/free CoA ratio which is essential for [[pyruvate dehydrogenase]] complex (PDC) activity.[[pyruvate dehydrogenase]] complex (PDC) activity.)
  • Carnitine acyltransferase  + ('''Carnitine acyltransferases''' mediate t'''Carnitine acyltransferases''' mediate the transport of long-chain fatty acids across the inner mt-membrane by binding them to carnitine. First, long-chain fatty acids are activated by an energy-requiring step in which the fatty acid ester of CoA is formed enzymatically at the expense of ATP. The fatty acids then pass through the inner mt-membrane and enter the mitochondria as carnitine esters ([[acylcarnitine]]s). The fatty acyl group is then transferred from carnitine to intramitochondrial CoA and the resulting fatty acyl CoA is used as a substrate in the fatty acid oxidation (FAO) cycle in the mt-matrix.id oxidation (FAO) cycle in the mt-matrix.)
  • Carnitine palmitoyltransferase I  + ('''Carnitine palmitoyltransferase I''' (CP'''Carnitine palmitoyltransferase I''' (CPT-I, also known as carnitine acyltransferase I) is a regulatory enzyme in mitochondrial long-chain acyl-CoA uptake and further oxidation. CPT-I is associated with the mt-outer membrane mtOM and catalyses the formation of [[acylcarnitine]]s from acyl-CoA and L-carnitine. In the next step, acyl-carnitines are transported to the mitochondrial matrix via [[carnitine-acylcarnitine translocase]] in exchange for free [[carnitine]]. In the inner side of the mtIM [[carnitine palmitoyltransferase II]] converts the acyl-carnitines to carnitine and acyl-CoAs. There are three enzyme isoforms: CPT-1A (liver type), CPT-1B (muscle type), CPT-1C (brain type). Isoforms have significantly different kinetic and regulatory properties. Malonyl-CoA is an endogenous inhibitor of CPT-I.l-CoA is an endogenous inhibitor of CPT-I.)
  • Carnitine palmitoyltransferase II  + ('''Carnitine palmitoyltransferase II''' (C'''Carnitine palmitoyltransferase II''' (CPT-II, also known as carnitine acyltransferase II) is part of the carnitine shuttle which is responsible for the mitochondrial transport of long-chain fatty acids. CPT-II is located on the inner side of the mtIM and converts the [[acylcarnitine]]s (produced in the reaction catalyzed by [[carnitine palmitoyltransferase I]]) to carnitine and acyl-CoAs, which undergo ß-oxidation in the mitochondrial matrix. Free carnitines are transported out of the mitochondrial matrix in exchange for acyl-carnitines via an integral mtIM protein [[carnitine-acylcarnitine translocase]] (CACT). Short- and medium-chain fatty acids do not require the carnitine shuttle for mitochondrial transport.itine shuttle for mitochondrial transport.)
  • Carnitine  + ('''Carnitine''' is an important factor for'''Carnitine''' is an important factor for the transport of long-chain fatty acids bound to carnitine ([[carnitine acyltransferase]]) into the mitochondrial matrix for subsequent β-oxidation. There are two enantiomers: D- and L-carnitine. Only the L-isomer is physiologically active.ly the L-isomer is physiologically active.)
  • Carnitine-acylcarnitine translocase  + ('''Carnitine-acylcarnitine translocase''' '''Carnitine-acylcarnitine translocase''' (CACT) is part of the carnitine shuttle which mediates the mitochondrial transport of long-chain fatty acids where the [[fatty acid oxidation]] occurs. </br>CACT is an internal mt-IM protein and transports [[acylcarnitine]]s into the mitochondrial matrix in exchange for free [[carnitine]].[[carnitine]].)
  • Malate transport  + ('''Carriers for malate: * [[dicarboxylate carrier]] * [[tricarboxylate carrier]] * [[2-oxoglutarate carrier]])
  • Catalase  + ('''Catalase''' catalyzes the dismutation o'''Catalase''' catalyzes the dismutation of [[hydrogen peroxide]] to water and [[oxygen]]. Perhaps all cells have catalase, but mitochondria of most cells lack catalase. Cardiac mitochondria are exceptional in having mt-catalase activity (rat heart mitochondria: Radi et al 1991; mouse heart mitochondria: Rindler et al 2013). [[Hydroxylamine]] is an inhibitor of catalase, which is also inhibited by [[cyanide]] and [[azide]].</br></br>Mitochondrial respiration medium [[MiR05]] was developed considering the intracellular conditions of mitochondria in living cells. In mitochondrial preparations, enzymes and substrates present in the cytosol (such as catalase) are diluted when the plasma membrane is removed. Therefore, the addition of catalase is recommended when working with mitochondrial preparations, to consume any H<sub>2</sub>O<sub>2</sub> generated during the assay.2</sub>O<sub>2</sub> generated during the assay.)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.