Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''DTPA''' (Diethylenetriamine-N,N,N',N,N-pentaacetic acid, pentetic aci". Since there have been only a few results, also nearby values are displayed.

Showing below up to 10 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Electric current  + ('''Current''' or electric [[flow]] โ€ฆ '''Current''' or electric [[flow]] ''I''<sub>el</sub> is the [[advancement]] of [[charge]] per unit of time, expressed in the SI base unit [[ampere]] [Cยทs<sup>-1</sup> = A]. Electrons or ions are the current-carrying [[motive entity |motive entities]] of electric flow. Electrons e<sup>-</sup> are negatively charged subatomic particles carrying 'negative electricity' with a mass that is about 1/1700 of the smallest particle โ€” the proton โ€” carrying 'positive electricity' (Thompson 1906). Correspondingly the [[velocity]] of electrons is much higher than that of protons or any other (larger) ion. Current is the velocity ''v'' of paticles times the number of motive charges. Therefore, electron current ''I''<sub>e<sup>-</sup></sub> is of a different nature from electric current ''I''<sub>el''ฯ‡''</sub> carried by all species ''i'' of ions ''X<sub>i</sub>'' (cations and anions) summarized as ''ฯ‡'' = ฮฃ(''z<sub>i</sub>''ยท''X<sub>i</sub>''). Whereas ''I''<sub>e<sup>-</sup></sub> is the net translocation of electrons moving forwards and backwards, ''I''<sub>el''ฯ‡''</sub> is the net translocation of charges carried by different cations and anions. In contrast, ion current ''I''<sub>elX</sub> of a specific ion X is the partial translocation of charges carried by net translocation of ion X only. If cation current ''I''<sub>elX<sup>+</sup></sub> is antagonized entirely by counterion current ''I''<sub>elY<sup>-</sup></sub> as the process of antiport, then the electric current ''I''<sub>el''ฯ‡''</sub> is zero. The (net) electric current in a compartmental system is driven by the electric force ฮ”<sub>el</sub>''F''<sub>p<sup>+</sup></sub> or electric potential difference ฮ”''ฮจ''<sub>p<sup>+</sup></sub>, whereas a compensated ion/counterion antiport current is insensitive to the electric potential difference.tal system is driven by the electric force ฮ”<sub>el</sub>''F''<sub>p<sup>+</sup></sub> or electric potential difference ฮ”''ฮจ''<sub>p<sup>+</sup></sub>, whereas a compensated ion/counterion antiport current is insensitive to the electric potential difference.)
  • Cuvettes  + ('''Cuvettes''' are used in [[fluorometry]] โ€ฆ '''Cuvettes''' are used in [[fluorometry]] and [[transmission spectrophotometry]] to contain the samples. Use of the term 'cells' for cuvettes is discouraged, to avoid confusion with 'living cells'. Traditionally cuvettes have a square cross-section (10 x 10 mm). For many applications they are made of transparent plastic. Glass cells are used where samples may contain plastic solvents, and for some applications requiring measurements below 300 nm, quartz glass or high purity fused silica cuvettes may be necessary.ty fused silica cuvettes may be necessary.)
  • Cyanide  + ('''Cyanide''' (usually added as KCN) is a competitive inhibitor of [[Complex_IV| cytochcrome ''c'' oxidase (CIV)]]. Inhibition is reversed by pyruvate and high oxygen levels.)
  • Cyclic voltammetry - DatLab  + ('''Cyclic voltammetry''')
  • Cyclic voltammetry  + ('''Cyclic voltammetry''' (CV) is a type of โ€ฆ '''Cyclic voltammetry''' (CV) is a type of electrochemical measurement which is applied with the [[Q-Module]] as quality control to </br>(''1'') determine the oxidation and reduction peak potentials of [[Coenzyme Q]] in the specific experimental condition, (2) check the quality of the [[Q-Sensor]], and (''3'') test the interference of chemicals used in the HRR assay with the Q-Sensor. In CV, the [[Q-Sensor]] with the [[three-electrode system]] is used to obtain information about the analyte ([[Coenzyme Q|CoQ]]) by measuring the current (''I'') as the electric potential (''V'') between two of the electrodes is varied. In CV the electric potential between the glassy carbon (GC) and the Ag/AgCl reference electrode changes linearly versus time in cyclical phases, while the current is detected between GC and platinum electrode (Pt). The detected current is plotted versus the applied voltage to obtain the typical cyclic voltammogram trace (Figure 1). The presence of substances that are oxidized/reduced will result in current between GC and Pt, which can be seen as characteristic peaks in the voltammogram at a defined potential. The oxidation or the reduction peak potential values are used to set the GC (integrated into the [[Q-Sensor]]) for a separate experiment to measure the [[Q redox state]] of a biological sample. The oxidation and reduction peak potentials can be influenced by 1) the respiration medium, 2) the type of [[Coenzyme Q | CoQ]], 3) the polarization window, 4) the scan speed, 5) the number of cycles, 6) the concentration of the analyte (CoQ), and 7) the initial polarization voltage. <be></br>:::-''See'': [[MiPNet24.12 NextGen-O2k: Q-Module]].</br>:::::[[MiPNet24.16 DatLab8.0: CV-Module]][[MiPNet24.16 DatLab8.0: CV-Module]])
  • Cyclosporin A  + ('''Cyclosporin A''' (CsA) is a cyclic unde โ€ฆ '''Cyclosporin A''' (CsA) is a cyclic undecapeptide from an extract of soil fungi that binds the cyclophilin D and thus preventing the formation of the mitochondrial [[PTP|permeability transition pore]]. The interaction of CsA with the cyclophilin D is phosphate mediated but the full mechanism of interaction is not well understood. For example, the deficiency of cyclophilin D in KO models does not prevent mitochondria from permeability transition and from CsA inhibition. Moreover, it is also a is a calcineurin inhibitor and potent immunosuppressive agent used largely as a means of prophylaxis against cellular rejection after solid organ transplantation.jection after solid organ transplantation.)
  • Cytochrome c  + ('''Cytochrome ''c''''' is a component of t โ€ฆ '''Cytochrome ''c''''' is a component of the Electron transfer-pathway ([[Electron transfer pathway]]) in mitochondria. It is a small heme protein loosely associated with the outer side of the inner mitochondrial membrane. The heme group of cytochrome ''c'' transfers electrons from [[Complex III]] to [[Complex IV]]. The release of cytochrome ''c'' into the cytoplasm is associated with apoptosis. Cytochrome ''c'' is applied in [[HRR]] to test the integrity of the [[mitochondrial outer membrane]] ([[cytochrome c control efficiency]]).[[cytochrome c control efficiency]]).)
  • D-number  + ('''D number''' is the unique code given fo โ€ฆ '''D number''' is the unique code given for each [[SUIT]] protocol. In the same [[MitoPedia: SUIT |SUIT protocol]] family (SUIT-###), there might be different protocols, specifically designed for different [[sample]] type (''e.g.'', different [[mitochondrial preparations]]) or for different applications (''e.g.'', O2, [[AmR]], [[Mitochondrial membrane potential|Fluo]], [[MgG]]). Since the use of different kinds of sample or application may result in slightly different steps, each protocol receives a different D-number.ch protocol receives a different D-number.)
  • Run DL-Protocol/Set O2 limit  + ('''DL-Protocols''' (DLP) can be selected i โ€ฆ '''DL-Protocols''' (DLP) can be selected in DatLab 7 in the pull-down menu 'Protocol': Set DL-Protocol / O2 limit. A DL-Protocol defines the sequence of [[Events - DatLab |Events]] and [[Marks - DatLab |Marks]] and can be assigned to O2k-Chamber A or B, or both. Linked to DL-Protocols are templates for storing exported data in a database and for data analysis. Instrumental DL-Protocols are used for calibrations and instrumental quality control, without experimental sample in the incubation medium. DL-Protocols for [[substrate-uncoupler-inhibitor titration]] (SUIT) provide a guide through a sequence of [[coupling-control state]]s and [[Electron-transfer-pathway state]]s. A [[MitoPedia:_SUIT|library]] of evaluated and tested standard DL-Protocols is provided by the Oroboros team. The Titration-Injection-microPump [[TIP2k]] can be programmed for automatic control of titration steps in a DL-Protocol. In DatLab 7.4, it is possible to edit a DL-Protocol and save it as a [[Export_DL-Protocol_User_(*.DLPU)| user-specific DL-Protocol]] (*.DLPU). For more information, see: [[Enable DL-Protocol editing]]. A '''Lower O2 limit [ยตM]''' can be defined for each chamber, to trigger an automatic warning when the experimental O<sub>2</sub> concentration declines below this limit as a WARNING to remind the user that re-oxygenation of the medium may be required.ser that re-oxygenation of the medium may be required.)
  • DTPA  + ('''DTPA''' (Diethylenetriamine-N,N,N',N,N- โ€ฆ '''DTPA''' (Diethylenetriamine-N,N,N',N,N-pentaacetic acid, pentetic acid,(Carboxymethyl)imino]bis(ethylenenitrilo)-tetra-acetic acid) is a polyaminopolycarboxylic acid (like EDTA) chelator of metal cations. DTPA wraps around a metal ion by forming up to eight bounds, because each COO- group and and N-center serves a center for chelation. With transition metals the number of bounds is less than eight. The compound is not cell membrane permeable. In general, it chelates multivalent ions stronger than EDTA.lates multivalent ions stronger than EDTA.)
 ('''DTPA''' (Diethylenetriamine-N,N,N',N,N-pentaacetic acid, pentetic aci)
  • O2k control (active)  + ('''DatLab 8''': Change settings of the connected O2k and current measurement. '''DatLab 7''' : to modify instrumental settings: [[O2k control - DatLab 7 | O2k control]]; to modify settings of specific channels: [[O2k configuration]].)
  • Quit - DatLab  + ('''DatLab 8''': Close DatLab files and '''quit''' the program. '''DatLab 7''' : [[Exit - DatLab 7 | Exit]])
  • Connect - DatLab  + ('''DatLab 8''': Connect DatLab to the O2k. '''DatLab 7''' : [[Connect to O2k - DatLab 7 | Connect to O2k]])
  • Data labels and units  + ('''DatLab 8''': Display and edit default data labels and units for different channels. [[File:Datalabels.png|right|450px]] '''DatLab 7''' : [[O2k channel labels - DatLab 7 | O2k channel labels]].)
  • Sample and medium - DatLab  + ('''DatLab 8''': In the window '''Sample an โ€ฆ '''DatLab 8''': In the window '''Sample and medium''', information is entered and displayed for the sample and medium. Entries can be edited any time during the experiment or during post-experiment analysis. All related results are recalculated instantaneously with the new parameters. The window can be opened whenever a file is loaded or currently recorded.</br></br>'''DatLab 7''': [[Sample - DatLab 7 | Sample]][[Sample - DatLab 7 | Sample]])
  • Set Power O2k number - DatLab  + ('''DatLab 8''': Set a [[Power O2k Numbers | Power-O2k number]] to label the O2k in a Power O2k-Lab. '''DatLab 7''' : Set the Power-O2k number in the [[O2k configuration]] window.)
  • DatLab templates  + ('''DatLab templates''' can be imported for O2k-setups, graph layouts, mark names, TIP2k setups and marks statistics configurations. :::: See also ยป [[Manage setups and templates - DatLab|Manage setups and templates]])
  • DatLab-Upgrading\4.x-5.2  + ('''DatLab-Upgrading\4.1-5.2''': Upgrading DatLab 4.x to 5.2, incl. O2k-Manual, with free follow-up updates of DatLab 5.2. '''Discontinued''': see higher [[DatLab]] version.)
  • DataCite  + ('''DataCite''' is a global community of or โ€ฆ '''DataCite''' is a global community of organizations and researchers identifying and citing research outputs and resources. We provide services to create persistent records of research, enable discovery and reuse, and support workflows throughout the research lifecycle.rkflows throughout the research lifecycle.)
  • Dead cells  + ('''Dead cells''' dce are characterized by the loss of plasma membrane barrier function. The total cell count (''N''<sub>ce</sub>) is the sum of viable cells (''N''<sub>vce</sub>) and dead cells (''N''<sub>dce</sub>).)
Cookies help us deliver our services. By using our services, you agree to our use of cookies.