Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Hypothermia''' in [[endothermy | endotherms]] is a state of stressful". Since there have been only a few results, also nearby values are displayed.

Showing below up to 10 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Homeothermy  + ('''Homeothermy''' is the stable regulation of body temperature in [[endothermy | endotherms]] by metabolic heat production and control of heat exchange with the environment, or in [[ectotherms]] by behavioural means to select a stable thermal environment.)
  • Horseradish peroxidase  + ('''Horseradish peroxidase''' readily combines with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and the resultant [HRP-H<sub>2</sub>O<sub>2</sub>] complex can oxidize a wide variety of hydrogen donors.)
  • Hydrogen sulfide  + ('''Hydrogen sulfide (H<sub>2</sub>S)''' is involved in signaling and may have have further biological importance.)
  • Hydron  + ('''Hydron''' is the general name for the cation H<sup>+</sup> used without regard to the nuclear mass of the hydrogen entity (H is the hydro group), either for H in its natural abundance or without distinction between the isotopes.)
  • Hydroxycinnamate  + ('''Hydroxycinnamate''' (alpha-cyano-4-hydr'''Hydroxycinnamate''' (alpha-cyano-4-hydroxycinnamic acid) is an inhibitor of the [[pyruvate carrier]] (0.65 mM). Above 10 mM [[pyruvate]], hydroxycinnamate cannot inhibit respiration from pyruvate, since the weak pyruvic acid can pass the inner mt-membrane in non-dissociated form.inner mt-membrane in non-dissociated form.)
  • Hydroxylamine  + ('''Hydroxylamine''' is an inhibitor of [[catalase]].)
  • Hyperoxia  + ('''Hyperoxia''' is defined as environmenta'''Hyperoxia''' is defined as environmental oxygen pressure above the [[normoxic]] reference level. Cellular and intracellular hyperoxia is imposed on isolated cells and isolated mitochondria at air-level oxygen pressures which are higher compared to cellular and intracellular oxygen pressures under tissue conditions in vivo. Hyperoxic conditions may impose oxidative stress and may increase maximum aerobic performance. may increase maximum aerobic performance.)
  • Hyperthermia  + ('''Hyperthermia''' in [[endothermy | endotherms]]'''Hyperthermia''' in [[endothermy | endotherms]] is a state of stressful up to lethal elevated body core temperature. In humans, the limit of hyperthermia (fever) is considered as >38.3 °C, compared to [[normothermia]] at a body temperature of 36.5 to 37.5 °C.[normothermia]] at a body temperature of 36.5 to 37.5 °C.)
  • Hyphenation  + ('''Hyphenation''' is used to connect two w'''Hyphenation''' is used to connect two words (compound words) or two parts of a word to clarify the meaning of a sentence. The same two words may be hyphenated or not depending on context. Hyphenation may present a problem when searching for a term such as '[[Steady state]]'. It is helpful to write 'steady-state measurement', to clarify that the measurement is performed at steady state, rather than implying that a state measurement is steady. But this does not imply that hyphenation is applied to the 'measurement performed at steady state'. Thus, the key word is '[[steady state]]'. Compound adjectives should be hyphenated (steady-state measurement), but if the compound adjective follows the term (measurement at steady state), hyphenation does not add any information and should be avoided. Find more examples and guidelines in the [https://www.grammarly.com/blog/hyphen/ grammarly blog on Hyphen] and in [https://apastyle.apa.org/learn/faqs/when-use-hyphen apastyle.apa.org].rn/faqs/when-use-hyphen apastyle.apa.org].)
  • Hypothermia  + ('''Hypothermia''' in [[endothermy | endotherms]]'''Hypothermia''' in [[endothermy | endotherms]] is a state of stressful up to lethal low body core temperature. In humans, the limit of hypothermia is considered as 35 °C, compared to [[normothermia]] at a body temperature of 36.5 to 37.5 °C. Hypothermia is classified as mild (32–35 °C), moderate (28–32 °C), severe (20–28 °C), and profound (<20 °C). severe (20–28 °C), and profound (<20 °C).)
 ('''Hypothermia''' in [[endothermy | endotherms]] is a state of stressful)
  • Hypoxia  + ('''Hypoxia''' (hypox) is defined in respir'''Hypoxia''' (hypox) is defined in respiratory physiology as the state when insufficient O<sub>2</sub> is available for respiration, compared to ''environmental'' hypoxia defined as environmental oxygen pressures below the [[normoxic]] reference level. Three major categories of hypoxia are (''1'') environmental hypoxia, (''2'') physiological tissue hypoxia in hyperactivated states (e.g. at ''V''<sub>O<sub>2</sub>max</sub>) with intracellular oxygen demand/supply balance at steady state in tissues at environmental normoxia, compared to tissue normoxia in physiologically balanced states, and (''3'') pathological tissue hypoxia including ischemia and stroke, anaemia, chronic heart disease, chronic obstructive pulmonary disease, severe COVID-19, and obstructive sleep apnea. Pathological hypoxia leads to tissue hypoxia and heterogenous intracellular anoxia. Clinical oxygen treatment ('environmental hyperoxia') may not or only partially overcome pathological tissue hypoxia.al hyperoxia') may not or only partially overcome pathological tissue hypoxia.)
  • ISO 10012:2003 Measurement management systems  + ('''ISO 10012:2003 Measurement management s'''ISO 10012:2003 Measurement management systems — Requirements for measurement processes and measuring equipment''': An effective measurement management system ensures that measuring equipment and measurement processes are fit for their intended use and is important in achieving product quality objectives and managing the risk of incorrect measurement results. The objective of a measurement management system is to manage the risk that measuring equipment and measurement processes could produce incorrect results affecting the quality of an organization’s product. The methods used for the measurement management system range from basic equipment verification to the application of statistical techniques in the measurement process control.niques in the measurement process control.)
  • ISO 13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparison  + ('''ISO 13528:2015 Statistical methods for '''ISO 13528:2015 Statistical methods for use in proficiency testing by interlaboratory comparison''': Proficiency testing involves the use of interlaboratory comparisons to determine the performance of participants (which may be laboratories, inspection bodies, or individuals) for specific tests or measurements, and to monitor their continuing performance. There are a number of typical purposes of proficiency testing [[ISO/IEC 17043 General requirements for proficiency testing |ISO/IEC 17043:2010]]. These include the evaluation of laboratory performance, the identification of problems in laboratories, establishing effectiveness and comparability of test or measurement methods, the provision of additional confidence to laboratory customers, validation of uncertainty claims, and the education of participating laboratories. The statistical design and analytical techniques applied must be appropriate for the stated purpose(s). be appropriate for the stated purpose(s).)
  • ISO 15189:2012 Medical laboratories — Particular requirements for quality and competence  + ('''ISO 15189:2012 Medical laboratories — P'''ISO 15189:2012 Medical laboratories — Particular requirements for quality and competence''': This International Standard is for use by medical laboratories in developing their quality management systems and assessing their own competence, and for use by accreditation bodies in confirming or recognising the competence of medical laboratories. While this International Standard is intended for use throughout the currently recognised disciplines of medical laboratory services, those working in other services and disciplines could also find it useful and appropriate.could also find it useful and appropriate.)
  • ISO 17511:2003 In vitro diagnostic medical devices  + ('''ISO 17511:2003 In vitro diagnostic medi'''ISO 17511:2003 In vitro diagnostic medical devices -- Measurement of quantities in biological samples -- Metrological traceability of values assigned to calibrators and control materials''': For measurements of quantities in laboratory medicine, it is essential that the quantity is adequately defined and that the results reported to the physicians or other health care personel and patients are adequately accurate (true and precise) to allow correct medical interpretation and comparability over time and space.ion and comparability over time and space.)
  • ISO 9001:2015 Quality management systems - requirements  + ('''ISO 9001:2015 Quality management system'''ISO 9001:2015 Quality management systems - requirements''': The adoption of a quality management system is a strategic decision for an organization that can help to improve its overall performance and provide a sound basis for sustainable development initiatives. Consistently meeting requirements and addressing future needs and expectations poses a challenge for organizations in an increasingly dynamic and complex environment. To achieve this objective, the organization might find it necessary to adopt various forms of improvement in addition to correction and continual improvement, such as breakthrough change, innovation and re-organization.gh change, innovation and re-organization.)
  • ISO/IEC 17025:2005 Competence of testing and calibration laboratories  + ('''ISO/IEC 17025:2005 General requirements'''ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories''': The use of this International Standard will facilitate cooperation between laboratories and other bodies, and assist in the exchange of information and experience, and in the harmonization of standards and procedures. This International Standard specifies the general requirements for the competence to carry out tests and/or calibrations, including sampling. It covers testing and calibration performed using standard methods, non-standard methods, and laboratory-developed methods.methods, and laboratory-developed methods.)
  • ISO/IEC 17043:2010 General requirements for proficiency testing  + ('''ISO/IEC 17043:2010 Conformity assessmen'''ISO/IEC 17043:2010 Conformity assessment — General requirements for proficiency testing''': The use of interlaboratory comparisons is increasing internationally. This International Standard provides a consistent basis to determine the competence of organizations that provide proficiency testing.izations that provide proficiency testing.)
  • Iconic symbols  + ('''Iconic symbols''' are used in [[ergodynamics]]'''Iconic symbols''' are used in [[ergodynamics]] to indicate more explicitely — compared to standard SI or IUPAC symbols — the quantity represented and some boundary conditions. This is particularly the case in normalized quantities (ratios of quantities). Iconic (or canonical) symbols help to clarify the meaning, are based on SI and IUPAC symbols as far as possible, and may be translated into more commonly used, practical symbols. Several ambiguities in SI and IUPAC symbols are eliminated by the systematic structure of iconic symbols, but it may be impossible to avoid all ambiguities, particulary when long (canonical) symbols are abbreviated in a particular context. Clarity is improved always by showing the unit of a quantity together with the symbol of the quantity. Iconic symbols cannot be identical with IUPAC symbols when a different definition is used — this would add to the confusion. For example, the IUPAC symbols ''n''<sub>B</sub> [mol] and ''V''<sub>B</sub> [m<sup>3</sup>] denote amount and volume of B. Consequently, it should be expected, that the symbol ''Q''<sub>B</sub> indicates charge of B [C]. However, the IUPAC symbol ''Q''<sub>B</sub> is used for particle charge per ion B [C·x<sup>-1</sup>]. This prohibits a consistent definition of ''Q''<sub>B</sub> as a potential iconic symbol for charge carried by a given quantity of ions B with unit [C], instead of particle charge per ion B with unit [C·x<sup>-1</sup>]. Hence, the conventional ambigous system forces compatible iconic symbols to be more complicated, using ''Q''<sub>elB</sub> [C] and ''Q''<sub>''<u>N</u>''B</sub> [C·x<sup>-1</sup>] to distinguish charge of B from charge per elementary B. ''Q''<sub>''<u>n</u>''B</sub> [C·mol<sup>-1</sup>] is charge per molar amount of B.'B</sub> [C·x<sup>-1</sup>] to distinguish charge of B from charge per elementary B. ''Q''<sub>''<u>n</u>''B</sub> [C·mol<sup>-1</sup>] is charge per molar amount of B.)
  • Impact factor  + ('''Impact factor''' is a measure of a scie'''Impact factor''' is a measure of a scientific journal's citations per publication. The Journal Citation Reports, maintained by Clarivate Analytics, provides the calculated impact factors. The IF is frequently used as an indicator of a journal's importance or prestige, which is nowadays increasingly contested. which is nowadays increasingly contested.)