Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Oligomycin''' (Omy) is an inhibitor of [[ATP synthase]] by blocking i". Since there have been only a few results, also nearby values are displayed.

Showing below up to 10 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • OctGMS  + ('''OctGMS''': [[Octanoylcarnitine]] &[[Glutamate]] & [[Malate]]& [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocols:''' [[SUIT-016]], [[SUIT-017]])
  • OctM pathway control state  + ('''OctM''': [[Octanoylcarnitine]]'''OctM''': [[Octanoylcarnitine]] & [[Malate]].</br></br>'''MitoPathway control state:''' F</br></br>'''SUIT protocols:''' [[SUIT-002]], [[SUIT-015]], [[SUIT-016]], [[SUIT-017]]</br></br>Respiratory stimulation of the [[Fatty acid oxidation pathway control state| FAO-pathway]], F, by [[fatty acid]] FA in the presence of [[malate]] M. Malate is a [[NADH Electron transfer-pathway state |type N substrate]] (N), required for the F-pathway. In the presence of [[Malate-anaplerotic pathway control state|anaplerotic pathways]] (''e.g.'', [[Malic enzyme|mitochondrial malic enzyme, mtME]]) the F-pathway capacity is overestimated, if there is an added contribution of NADH-linked respiration, F(N) (see [[SUIT-002]]). The FA concentration has to be optimized to saturate the [[Fatty acid oxidation pathway control state| FAO-pathway]], without inhibiting or uncoupling respiration. Low concentration of [[malate]], typically 0.1 mM, does not saturate the [[N-pathway]]; but saturates the [[Fatty acid oxidation pathway control state |F-pathway]]. High concentration of [[malate]], typically 2 mM, saturates the [[N-pathway]].[[N-pathway]].)
  • OctPGM pathway control state  + ('''OctPGM''': [[Octanoylcarnitine]]'''OctPGM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocols:''' [[SUIT-002]]</br>:This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<1 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate and glutamate is added to compare FAO as the background state with FN as the reference state.O as the background state with FN as the reference state.)
  • OctPGMS pathway control state  + ('''OctPGMS''': [[Octanoylcarnitine]]'''OctPGMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]].</br></br>'''MitoPathway control state:''' [[FNS]]</br></br>'''SUIT protocol:''' [[SUIT-001]], [[SUIT-002]], [[SUIT-015]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPGMSGp pathway control state  + ('''OctPGMSGp''': [[Octanoylcarnitine]]'''OctPGMSGp''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]].</br></br>'''MitoPathway control state:''' FNSGp</br></br>'''SUIT protocol:''' [[SUIT-002]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPM pathway control state  + ('''OctPM''': [[Octanoylcarnitine]]'''OctPM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocol:''' [[SUIT-002]], [[SUIT-005]]</br></br>This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<0 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate is added to compare FAO as the background state with FN as the reference state. the background state with FN as the reference state.)
  • OctPMS  + ('''OctPMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]] & [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocol:''' [[SUIT-005]])
  • Octanoate  + ('''Octanoate''' (octanoic acid). C<sub>8</sub>H<sub>16</sub>O<sub>2</sub> Common name: Caprylic acid.)
  • Octanoylcarnitine  + ('''Octanoylcarnitine''' is a medium-chain fatty acid (octanoic acid: eight-carbon saturated fatty acid) covalently linked to [[carnitine]], frequently applied as a substrate for [[fatty acid oxidation]] (FAO) in [[mitochondrial preparations]].)
  • Oligomycin  + ('''Oligomycin''' (Omy) is an inhibitor of '''Oligomycin''' (Omy) is an inhibitor of [[ATP synthase]] by blocking its proton channel (Fo subunit), which is necessary for oxidative phosphorylation of ADP to ATP (energy production). The inhibition of ATP synthesis also inhibits respiration. In OXPHOS analysis, Omy is used to induce a [[LEAK respiration]] state of respiration (abbreviated as ''L''(Omy) to differentiate from ''L''(n), LEAK state in the absence of ADP).L''(n), LEAK state in the absence of ADP).)
 ('''Oligomycin''' (Omy) is an inhibitor of [[ATP synthase]] by blocking i)
  • Optics  + ('''Optics''' are the components that are u'''Optics''' are the components that are used to relay and focus light through a [[spectrofluorometer]] or [[spectrophotometer]]. These would normally consist of lenses and/or concave mirrors. The number of such components should be kept to a minimum due to the losses of light (5-10%) that occur at each surface. light (5-10%) that occur at each surface.)
  • Ouabain  + ('''Ouabain''' (synonym: G-strophantin octa'''Ouabain''' (synonym: G-strophantin octahydrate) is a poisonous cardiac glycoside. The classical mechanism of action of ouabain involves its binding to and inhibition of the plasma membrane Na+/K+-ATPase (sodium pump) especially at the higher concentrations. Low (nanomolar and subnanomolar) concentrations of ouabain stimulate the Na-K-ATPase.ions of ouabain stimulate the Na-K-ATPase.)
  • Overfitting  + ('''Overfitting''' in statistics is the act'''Overfitting''' in statistics is the act of mistaking noise for a signal. Overfitting makes a model look ‘’better’’ on paper but perform ‘’worse’’ in the real world. This may make it easier to get the model published in an academic journal or to sell to a client, crowding out more honest models from the marketplace. But if the model is fitting noise, it has the potential to hurt the science (quoted from [[Silver 2012 Penguin Press]]).nguin Press]]).)
  • Overlay of plots - DatLab  + ('''Overlay of plots''' is defined in DatLa'''Overlay of plots''' is defined in DatLab as selection of graph layouts showing identical plots from the two O2k-chambers in each graph. Overlay of plots is selected in [[Graph layout - DatLab |Graph layout]]. Superimposed traces of flux/flow from chambers A and B are then shown in Graph 1, and of concentration in chambers A and B in Graph 2.</br></br>There are basically two ways to superimpose traces recorded in different experiments: Export of the graphics via windows metafile or export of the data to e.g. a spreadsheet program.</br></br>If you export via wmf you also can manipulate the graphics but then usually the lines are broken up in different segments. This can be done in various programs like MS Word, Open Office Draw and even in MSPower Point, though this maybe is the worst program to do this. It is better to manipulate them in a proper program like OO Draw, convert it to an unchangeable picture and then import it to a presentation graphics. Anyway, when you import directly to Power point (or other programs), make sure not to import it as a "picture" but as a metafile. Also in some programs you might afterwards have to "break" it up, or accept a "conversion to a MS Draw object" or other similar linguistic inventions of the software gurus. For this option we suggest to do as much as possible directly in DatLab (setting colors, line widths, ..) using the options in "Plots"/"select plots" and "graph"/"options". </br></br>The “hardcore“ option is to export the data and import it into e.g. a spreadsheet program (MS Excel , OOCalc). It takes longer to have a simple overlay but gives you far less problems later and its easier to make changes later. To do this you can export your dataset "Export"/"Data to Textfile" and then go from there."Data to Textfile" and then go from there.)
  • Oxalomalic acid  + ('''Oxalomalic acid''' is an inhibitor of a'''Oxalomalic acid''' is an inhibitor of aconitase (and of cytoplasmic NADP-dependent isocitrate dehydrogenase). Aconitase mediates the isomerization of citrate to isocitrate as the first step in the [[TCA_cycle| TCA cycle]]. Oxalomalic acid has been used at 1 mM concentration and after 45 min of pre-incubation to inhibit aconitase in permeabilized rat Soleus muscle fibres, inhibiting the enzyme by 24% ([[Osiki 2016 FASEB J]]).[[Osiki 2016 FASEB J]]).)
  • Oxidative stress  + ('''Oxidative stress''' results from an imb'''Oxidative stress''' results from an imbalance between pro-oxidants and antioxidants shifting the equilibrium in favor of the pro-oxidants. This process can be due by an increment in pro-oxidants, by a depletion of antioxidant systems or both. Oxidative stress generates oxidative damage of proteins, lipids and DNA.dative damage of proteins, lipids and DNA.)
  • Oxoglutarate dehydrogenase  + ('''Oxoglutarate dehydrogenase''' (α-ketogl'''Oxoglutarate dehydrogenase''' (α-ketoglutarate dehydrogenase) is a highly regulated enzyme of the [[tricarboxylic acid cycle]]. It catalyses the conversion of oxoglutarate (alpha-ketoglutarate) to succinyl-CoA, reduces NAD<sup>+</sup> to [[NADH]] and thus links to [[Complex I]] in the Electron transfer-pathway. OgDH is activated by low Ca<sup>2+</sup> (<20 µM) but inactivated by high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.y high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.)
  • Oxygen flux  + ('''Oxygen flux''', ''J''<sub>O<su'''Oxygen flux''', ''J''<sub>O<sub>2</sub></sub>, is a [[specific quantity]]. Oxygen [[flux]] is [[oxygen flow]], ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup> per system] (an [[extensive quantity]]), divided by system size. Flux may be volume-specific (flow per volume [pmol·s<sup>-1</sup>·mL<sup>-1</sup>]), mass-specific (flow per mass [pmol·s<sup>-1</sup>·mg<sup>-1</sup>]), or marker-specific (flow per mtEU). Oxygen flux (''e.g.'', per body mass, or per cell volume) is distinguished from oxygen flow (per number of objects, such as cells), ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup>·x<sup>-1</sup>]. These are different forms of [[normalization of rate]].lization of rate]].)
  • Oxygen kinetics  + ('''Oxygen kinetics''' describes the depend'''Oxygen kinetics''' describes the dependence of respiration of isolated mitochondria or cells on oxygen partial pressure. Frequently, a strictly hyperbolic kinetics is observed, with two parameters, the oxygen pressure at half-maximum flux, ''p''<sub>50</sub>, and maximum flux, Jmax. The ''p''<sub>50</sub> is in the range of 0.2 to 0.8 kPa for cytochrome ''c'' oxidase, isolated mitochondria and small cells, strongly dependent on ''J''<sub>max</sub> and coupling state.lls, strongly dependent on ''J''<sub>max</sub> and coupling state.)
  • Oxygen pressure  + ('''Oxygen pressure''' or partial [[pressure]] of oxygen [kPa], related to oxygen concentration in solution by the [[oxygen solubility]], ''S''<sub>O2</sub> [µM/kPa].)