Gnaiger 2019 MitoFit Preprints: Difference between revisions

From Bioblast
No edit summary
No edit summary
 
(207 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{MITOEAGLE}}
{{MitoFit page name}}
{{Publication
{{Publication
|title=MitoEAGLE preprint 2018-11-30(48) Mitochondrial respiratory states and rates. - http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08.
|title=Gnaiger E, Aasander Frostner E, Abdul Karim N, Abdel-Rahman EA, Abumrad NA, Acuna-Castroviejo D, Adiele RC, ''et al'' (2019) Mitochondrial respiratory states and rates. https://doi.org/10.26124/mitofit:190001.v6. — '''''Published''': 2020-05-20 Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v1''
|info=<big>'''Last update 2018-11-30''':</big> [[File:PDF.jpg|120px|link=http://www.mitoeagle.org/images/4/49/MitoEAGLE_preprint_2018-02-08.pdf |Bioblast pdf]] - » [http://www.mitoeagle.org/index.php/File:MitoEAGLE_preprint_2018-02-08.pdf Versions]
|info=MitoFit Preprint Arch 2019.1.v6 [[File:MitoFit Preprint Arch pdf.png|left|160px|link=https://www.mitofit.org/images/4/46/Gnaiger_2019_MitoFit_Preprint_Arch_doi_10.26124_mitofit_190001.pdf |MitoFit pdf]] '''[https://www.mitofit.org/images/4/46/Gnaiger_2019_MitoFit_Preprint_Arch_doi_10.26124_mitofit_190001.pdf Mitochondrial respiratory states and rates]'''
|authors='''''Corresponding author:''''', Gnaiger E, '''''Authors:''''', Gnaiger E, Aasander Frostner E, Abumrad NA, Acuna-Castroviejo D, Ahn B, Ali SS, Alton L, Alves MG, Amati F, Amoedo ND, Andreadou I, Arago Belenguer M, Aral C, Arandarcikaite O, Armand AS, Arnould T, Avram VF, Bailey DM, Bajpeyi S, Bajzikova M, Bakker BM, Bastos Sant'Anna Silva AC, Batterson P, Battino M, Bazil J, Beard DA, Bednarczyk P, Bello F, Ben-Shachar D, Bergdahl A, Berge RK, Bergmeister L, Bernardi P, Berridge MV, Bettinazzi S, Bishop D, Blier PU, Blindheim DF, Boardman NT, Boetker HE, Borchard S, Boros M, Borsheim E, Borutaite V, Botella Ruiz J, Bouillaud F, Bouitbir J, Boushel RC, Bovard J, Breton S, Brown DA, Brown GC, Brown RA, Brozinick JT, Buettner GR, Burtscher J, Calabria E, Calbet JA, Calzia E, Cannon DT, Cano Sanchez M, Canto AC, Cardoso LHD, Carvalho E, Casado Pinna M, Cassar S, Cassina AM, Castelo MP, Castro L, Cavalcanti-de-Albuquerque JP, Cervinkova Z, Chabi B, Chakrabarti L, Chaurasia B, Chen Q, Chicco AJ, Chinopoulos C, Chowdhury SK, Cizmarova B, Clementi E, Coen PM, Cohen BH, Coker RH, Collin A, Crisostomo L, Dahdah N, Dambrova M, Danhelovska T, Darveau CA, Das AM, Dash RK, Davidova E, Davis MS, De Goede P, De Palma C, Dembinska-Kiec A, Detraux D, Devaux Y, Di Marcello M, Dias TR, Distefano G, Doermann N, Doerrier C, Dong L, Donnelly C, Drahota Z, Dubouchaud H, Duchen MR, Dumas JF, Durham WJ, Dymkowska D, Dyrstad SE, Dyson A, Dzialowski EM, Ehinger J, Elmer E, Endlicher R, Engin AB, Escames G, Ezrova Z, Falk MJ, Fell DA, Ferdinandy P, Ferko M, Ferreira JCB, Ferreira R, Ferri A, Fessel JP, Filipovska A, Fisar Z, Fischer C, Fischer M, Fisher G, Fisher JJ, Ford E, Fornaro M, Galina A, Galkin A, Galli GL, Gan Z, Ganetzky R, Garcia-Roves PM, Garcia-Souza LF, Garipi E, Garlid KD, Garrabou G, Garten A, Gastaldelli A, Gayen J, Genders A, Genova ML, Giovarelli M, Gonzalez-Armenta JL, Goncalo Teixeira da SR, Gonzalo H, Goodpaster BH, Gorr TA, Gourlay CW, Granata C, Grefte S, Guarch ME, Gueguen N, Gumeni S, Haas CB, Haavik J, Haendeler J, Hamann A, Han J, Han WH, Hancock CR, Hand SC, Handl J, Hargreaves IP, Harper ME, Harrison DK, Hausenloy DJ, Heales SJR, Heiestad C, Hellgren KT, Hepple RT, Hernansanz-Agustin P, Hewakapuge S, Hickey AJ, Hoel F, Holland OJ, Holloway GP, Hoppel CL, Hoppel F, Houstek J, Huete-Ortega M, Hyrossova P, Iglesias-Gonzalez J, Irving BA, Isola R, Iyer S, Jackson CB, Jadiya P, Jang DH, Jang YC, Janowska J, Jansen K, Jansen-Duerr P, Jansone B, Jarmuszkiewicz W, Jaskiewicz A, Jespersen NR, Jha RK, Jurczak MJ, Jurk D, Kaambre T, Kaczor JJ, Kainulainen H, Kampa RP, Kandel SM, Kane DA, Kang Y, Kappler L, Karabatsiakis A, Karkucinska-Wieckowska A, Kaur S, Keijer J, Keller MA, Keppner G, Khamoui AV, Kidere D, Kilbaugh T, Kim HK, Kim JKS, Klepinin A, Klingenspor M, Komlodi T, Koopman WJH, Kopitar-Jerala N, Kowaltowski AJ, Kozlov AV, Krajcova A, Krako Jakovljevic N, Kristal BS, Krycer JR, Kuang J, Kucera O, Kuka J, Kwak HB, Kwast K, Laasmaa M, Labieniec-Watala M, Lai N, Land JM, Lane N, Laner V, Lanza IR, Larsen TS, Lavery GG, Lazou A, Lee HK, Leeuwenburgh C, Lehti M, Lemieux H, Lenaz G, Lerfall J, Li PA, Li Puma L, Liepins E, Lionett S, Liu J, Lopez LC, Lucchinetti E, Ma T, Macedo MP, MacMillan-Crow LA, Majtnerova P, Makarova E, Makrecka-Kuka M, Malik AN, Markova M, Martins AD, Martin DS, Martins JD, Mazat JP, McKenna HT, Menze MA, Merz T, Meszaros AT, Methner A, Michalak S, Moellering DR, Moisoi N, Molina AJA, Montaigne D, Moore AL, Moreau K, Moreira BP, Moreno-Sanchez R, Mracek T, Muccini AM, Muntane J, Muntean DM, Murray AJ, Musiol E, Myhre Pedersen T, Nair KS, Nehlin JO, Nemec M, Neufer PD, Neuzil J, Neviere R, Newsom S, Nozickova K, O'Brien KA, O'Gorman D, Olgar Y, Oliveira MF, Oliveira MT, Oliveira PF, Oliveira PJ, Orynbayeva Z, Osiewacz HD, Ounpuu L, Pak YK, Pallotta ML, Palmeira CM, Parajuli N, Passos JF, Passrugger M, Patel HH, Pavlova N, Pecina P, Pereira da Silva Grilo da Silva F, Perez Valencia JA, Perks K, Pesta D, Petit PX, Pettersen IKN, Pichaud N, Pichler I, Piel S, Pietka TA, Pino MF, Pirkmajer S, Porter C, Porter RK, Pranger F, Prochownik EV, Pulinilkunnil T, Puskarich MA, Puurand M, Quijano C, Radenkovic F, Radi R, Ramzan R, Rattan SIS, Reboredo P, Renner-Sattler K, Rial E, Robinson MM, Roden M, Roesland GV, Rodriguez-Enriquez S, Rohlena J, Rolo AP, Ropelle ER, Rossignol R, Rossiter HB, Rubelj I, Rybacka-Mossakowska J, Saada A, Safaei Z, Salin K, Salvadego D, Sandi C, Saner N, Sanz A, Sazanov LA, Scatena R, Schartner M, Scheibye-Knudsen M, Schilling JM, Schlattner U, Schoenfeld P, Schots PC, Schulz R, Schwarzer C, Scott GR, Selman C, Shabalina IG, Sharma P, Sharma V, Shevchuk I, Siewiera K, Silber AM, Silva AM, Sims CA, Singer D, Skolik R, Smenes BT, Smith J, Soares FAA, Sobotka O, Sokolova I, Sonkar VK, Sowton AP, Sparagna GC, Sparks LM, Spinazzi M, Stankova P, Starr J, Stary C, Stelfa G, Stepto NK, Stiban J, Stier A, Stocker R, Storder J, Sumbalova Z, Suravajhala P, Svalbe B, Swerdlow RH, Swiniuch D, Szabo I, Szewczyk A, Szibor M, Tanaka M, Tandler B, Tarnopolsky MA, Tausan D, Tavernarakis N, Tepp K, Thakkar H, Thyfault JP, Tomar D, Torp MK, Towheed A, Tretter L, Trifunovic A, Trivigno C, Tronstad KJ, Trougakos IP, Truu L, Tuncay E, Turan B, Tyrrell DJ, Urban T, Valentine JM, Van Hove J, Vella J, Vendelin M, Vercesi AE, Victor VM, Vieira Ligo Teixeira C, Vidimce J, Viel C, Vieyra A, Vilks K, Villena JA, Vincent V, Vinogradov AD, Viscomi C, Vitorino RMP, Vogt S, Volani C, Volska K, Votion DM, Vujacic-Mirski K, Wagner BA, Ward ML, Warnsmann V, Wasserman DH, Watala C, Wei YH, Whitfield J, Wickert A, Wieckowski MR, Wiesner RJ, Williams C, Winwood-Smith H, Wohlgemuth SE, Wohlwend M, Wolff JN, Wrutniak-Cabello C, Wuest RCI, Yokota T, Zablocki K, Zanon A, Zaugg K, Zaugg M, Zdrazilova L, Zhang Y, Zhang YZ, Zikova A, Zischka H, Zorzano A, Zvejniece L
<br />
|year=2018
<br />
|journal=MitoEAGLE preprint
 
|abstract=As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow IUPAC guidelines on terminology in physical chemistry, extended by considerations on open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols to the nomenclature of classical bioenergetics. We endeavour to provide a balanced view on mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of databases of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery.
|authors=MitoFit Prep 2019.1.v6.
|year=2019
|journal=MitoFit Prep
|abstract=Version 6 ('''v6''') '''2019-08-30''' [https://www.mitofit.org/images/4/46/Gnaiger_2019_MitoFit_Preprint_Arch_doi_10.26124_mitofit_190001.pdf doi:10.26124/mitofit:190001.v6]
::: <small>Versions ('''v5''') 2019-07-24; ('''v4''') 2019-05-20; ('''v3''') 2019-04-24; ('''v2''') 2019-03-15; ('''v1''') 2019-02-12 - [https://www.mitofit.org/index.php/File:Gnaiger_2019_MitoFit_Preprint_Arch_doi_10.26124_mitofit_190001.pdf#Links_to_all_versions »Link to all versions«]</small>
::: <big>'''Published online''': 2020-05-20
:::» Gnaiger Erich et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. doi:10.26124/bec:2020-0001.v1.  '''»[[BEC_2020.1 doi10.26124bec2020-0001.v1 |Bioblast link]]«'''</big>
 
As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow guidelines of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols to the nomenclature of classical bioenergetics. We endeavour to provide a balanced view on mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of databases of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery.
|keywords=Mitochondrial respiratory control, coupling control, mitochondrial preparations, protonmotive force, uncoupling, oxidative phosphorylation, OXPHOS, efficiency, electron transfer, ET; proton leak, LEAK, residual oxygen consumption, ROX, State 2, State 3, State 4, normalization, flow, flux, O<sub>2</sub>
|keywords=Mitochondrial respiratory control, coupling control, mitochondrial preparations, protonmotive force, uncoupling, oxidative phosphorylation, OXPHOS, efficiency, electron transfer, ET; proton leak, LEAK, residual oxygen consumption, ROX, State 2, State 3, State 4, normalization, flow, flux, O<sub>2</sub>
|editor=[[Gnaiger E]]
|editor=[[Gnaiger E]]
}}
}}
__TOC__
__TOC__
 
== Authors: MitoEAGLE Task Group ==
Number of co-authors (2018-11-30): '''492'''
 
== Latest circulars ==
<br />
[[File:Expand.png|right|45px |Click to expand or collaps]]
<div class="toccolours mw-collapsible mw-collapsed">
::: <span style="font-size:105%; color:##424242">'''» 2019-11-29 MitoEAGLE coauthor circular'''</span>
<div class="mw-collapsible-content">
=== 2019-11-29 MitoEAGLE coauthor circular ===
:::: Dear MitoEAGLE preprint co-authors:
 
:::: The MitoEAGLE manuscript on ‘Mitochondrial respiratory states and rates’ has undergone a systematic development with new co-authors added in the process of many revisions (presently 485 co-authors). I hope that your suggestions have been properly implemented. I would like to thank you once again for your contributions or support, and for your understanding that elaboration towards journal submission has taken longer than expected.
 
:::: The current version 47 of the MitoEAGLE preprint includes several improvements and simplifications. Now we are initiating the process of submission to the preprint server www.biorxiv.org/ and journal (Cell Metabolism as an option). This will take a few weeks, during which time your final comments will be welcome.
 
:::: Please make sure that your name and initials are correctly placed in alphabetical order on the website and in the manuscript (pdf), and that your current institutional address is correctly presented on the Bioblast (MitoEAGLE) website (follow the hyperlink by clicking on your name)
::::» www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08
 
:::: It will be of tremendous help for the submission process, if you can send us your ORCID identifier, e.g., orcid.org/0000-0003-3647-5895 (orcid.org/ ), together with any corrections to [email protected].
 
:::: If we do not receive any answer from you, we will use the current entry for submission.
 
:::: With best wishes,
:::: Erich
 
:::: Erich Gnaiger
:::: Chair
:::: COST Action CA15203 MitoEAGLE
:::: T +43 512 566796 15, F +43 512 566796 20
:::: [email protected] | www.mitoeagle.org
</div>
</div>
 
<br />
[[File:Expand.png|right|45px |Click to expand or collaps]]
<div class="toccolours mw-collapsible mw-collapsed">
::: <span style="font-size:105%; color:##424242">'''» 2019-11-30 MIG circular'''</span>
<div class="mw-collapsible-content">
=== 2019-11-30 MIG circular ===
Your message dated Fri, 30 Nov 2018 02:17:25 with subject "MitoEAGLE manuscript submission" has been successfully distributed to the MITOCHONDRIA-L list (1840 recipients).
 
:::: Dear MIG members:
 
:::: We send you an update on the MitoEAGLE manuscript ‘Mitochondrial respiratory states and rates’ as a final invitation to join as coauthors by contributing to this manuscript. At the same time this is a big thanks to those MIG members who contributed already among the 489 coauthors so far. 
 
:::::: '''“As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. .. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.”'''
 
:::: MIG circulars on this manuscript have been distributed previously since April 2017. Now we are initiating the process of submission to the preprint server www.biorxiv.org and journal (Cell Metabolism as an option). This will take a few weeks, during which time final corrections and comments from additional co-authors are welcome.
 
:::: The newest version 48 is available for download:
::::» www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08
 
:::: The coauthor invitation is as follows (page 38 of the pdf file):
 
:::::: S2. Authors
<small>
:::::: This manuscript developed as an open invitation to scientists and students to join as co-authors in the bottom-up spirit of COST, to provide a balanced view of mitochondrial respiratory control and a consensus statement on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.
:::::: Co-authors are added in alphabetical order based upon a first draft written by the corresponding author, who edited all versions. Co-authors confirm that they have read the final manuscript, possibly have made additions or suggestions for improvement, and agree to implement the recommendations into future manuscripts, presentations and teaching materials.
:::::: We continue to invite comments and suggestions, particularly if you are an early career investigator adding an open future-oriented perspective, or an established scientist providing a balanced historical basis. Your critical input into the quality of the manuscript will be most welcome, improving our aims to be educational, general, consensus-oriented, and in practice be helpful to students working in mitochondrial respiratory physiology.
:::::: To join as a co-author, please feel free to focus on a particular section, providing direct input and references, and contributing to the scope of the manuscript from the perspective of your expertise. Your comments will be considered as appropriate in the manuscript and will be largely posted on the discussion page of the MitoEAGLE preprint website.
</small>
:::: It will be of tremendous help for the submission process, if you can send us your ORCID identifier (orcid.org/ ) together with any corrections and suggestions, to
 
:::: We hope that many MiG members will join as additional coauthors. With many thanks for your cooperation,
:::: Erich
 
:::: Erich Gnaiger
:::: Chair
:::: COST Action CA15203 MitoEAGLE
:::: T +43 512 566796 15, F +43 512 566796 20
:::: [email protected] | www.mitoeagle.org
</div>
</div>
::::» [[Talk:MitoEAGLE preprint 2018-02-08 |Previous circulars]]
 
 
== Executive summary ==
 
  Updated 2018-11-24
 
[[File:Respiration.png|thumb|right|400px|'''Figure 1. Internal and external respiration.''' Mitochondrial respiration is the oxidation of fuel substrates (electron donors) and reduction of O<sub>2</sub> catalysed by the electron transfer system, ETS: ('''mt''') mitochondrial catabolic respiration; ('''ce''') total cellular O<sub>2</sub> consumption; and ('''ext''') external respiration. All chemical reactions, r, that consume O<sub>2</sub> in the cells of an organism, contribute to cell respiration, ''J''<sub>rO2</sub>. In addition to mitochondrial catabolic respiration, O<sub>2</sub> is consumed by: (1) Mitochondrial residual oxygen consumption, ''Rox''. (2) Non-mitochondrial O<sub>2</sub> consumption by catabolic reactions, particularly peroxisomal oxidases and microsomal cytochrome P450 systems. (3) Non-mitochondrial ''Rox'' by reactions unrelated to catabolism. (4) Extracellular ''Rox''. (5) Aerobic microbial respiration. Bars are not at a quantitative scale.]]
[[File:Respiration.png|thumb|right|400px|'''Figure 1. Internal and external respiration.''' Mitochondrial respiration is the oxidation of fuel substrates (electron donors) and reduction of O<sub>2</sub> catalysed by the electron transfer system, ETS: ('''mt''') mitochondrial catabolic respiration; ('''ce''') total cellular O<sub>2</sub> consumption; and ('''ext''') external respiration. All chemical reactions, r, that consume O<sub>2</sub> in the cells of an organism, contribute to cell respiration, ''J''<sub>rO2</sub>. In addition to mitochondrial catabolic respiration, O<sub>2</sub> is consumed by: (1) Mitochondrial residual oxygen consumption, ''Rox''. (2) Non-mitochondrial O<sub>2</sub> consumption by catabolic reactions, particularly peroxisomal oxidases and microsomal cytochrome P450 systems. (3) Non-mitochondrial ''Rox'' by reactions unrelated to catabolism. (4) Extracellular ''Rox''. (5) Aerobic microbial respiration. Bars are not at a quantitative scale.]]
:::* '''Corresponding author'''
:::::: [[Gnaiger E |Erich Gnaiger]]
:::::: Chair COST Action CA15203 MitoEAGLE
:::::: T +43 512 566796 15, F +43 512 566796 20
:::::: [email protected] | www.mitoeagle.org
:::* '''Coauthors''' (listed in alphabetical order); number of coauthors (2019-09-16): '''621'''
:::::: ''Many coauthors have made significant additions and suggestions for improvement of the manuscript. All coauthors confirm to have read the final manuscript, and to agree to implement the recommendations into future manuscripts, presentations and teaching materials.''       
:::::: Disclaimer: This article was prepared while Joshua P. Fessel was employed at Vanderbilt University Medical Center. The opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.
:::* '''Copyright''': © 2019 Gnaiger et al.
:::::: This is an [[Open Access]] [[preprint]] (not peer-reviewed) distributed under the terms of the [[Creative Commons Attribution License]], which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. © remains with the authors, who have granted MitoFit an Open Access preprint licence in perpetuity.
:::* '''Mailing list'''
:::::: If you have read this paper and wish to be included in our mailing list, then see » [[MitoEAGLE#MitoEAGLE_Newsletter |MitoEAGLE Newsletter]]


:::: In view of the broad implications for health care, mitochondrial researchers face an increasing responsibility to disseminate their fundamental knowledge and novel discoveries to a wide range of stakeholders and scientists beyond the group of specialists. This requires implementation of a commonly accepted terminology within the discipline and standardization in the translational context. Authors, reviewers, journal editors, and lecturers are challenged to collaborate with the aim to harmonize the nomenclature in the growing field of mitochondrial physiology and bioenergetics, from evolutionary biology and comparative physiology to mitochondrial medicine. In the present communication we focus on the following concepts in mitochondrial physiology:
::::# Aerobic respiration depends on the coupling of phosphorylation (ADP → ATP) to O<sub>2</sub> flux in catabolic reactions. Coupling in oxidative phosphorylation is mediated by the translocation of protons across the inner mitochondrial membrane through proton pumps generating or utilizing the protonmotive force, that is maintained between the mitochondrial matrix and intermembrane compartment or outer mitochondrial space. Compartmental coupling distinguishes this vectorial component of oxidative phosphorylation from glycolytic fermentation as the counterpart of cellular core energy metabolism ('''Fig. 1'''). Cell respiration is distinguished from fermentation: (''1'') Electron acceptors are supplied by external respiration for the maintenance of redox balance, whereas fermentation is characterized by an internal electron acceptor produced in intermediary metabolism. In aerobic cell respiration, redox balance is maintained by O2 as the electron acceptor. (''2'') Compartmental coupling in vectorial oxidative phosphorylation contrasts to exclusively scalar substrate-level phosphorylation in fermentation.
::::# When measuring mitochondrial metabolism, the contribution of fermentation and other cytosolic interactions must be excluded from analysis by disrupting the barrier function of the plasma membrane. Selective removal or permeabilization of the plasma membrane yields mitochondrial preparations—including isolated mitochondria, tissue and cellular preparations—with structural and functional integrity. Subsequently, extra-mitochondrial concentrations of fuel substrates, ADP, ATP, inorganic phosphate, and cations including H+ can be controlled to determine mitochondrial function under a set of conditions defined as coupling control states. We strive to incorporate an easily recognized and understood, concept-driven terminology of bioenergetics with explicit terms and symbols that define the nature of respiratory states.
::::# Mitochondrial coupling states are defined according to the control of respiratory oxygen flux by the protonmotive force. Capacities of oxidative phosphorylation and electron transfer are measured at kinetically saturating concentrations of fuel substrates, ADP and inorganic phosphate, and O<sub>2</sub>, or at optimal uncoupler concentrations, respectively, in the absence of Complex IV inhibitors such as NO, CO, or H<sub>2</sub>S. Respiratory capacity is a measure of the upper bound of the rate of respiration; it depends on the substrate type undergoing oxidation, and provides reference values for the diagnosis of health and disease, and for evaluation of the effects of '''E'''volutionary background, '''A'''ge, '''G'''ender and sex, '''L'''ifestyle and '''E'''nvironment.
::::# Incomplete tightness of coupling, ''i.e.'', some degree of uncoupling relative to the substrate-dependent coupling stoichiometry, is a characteristic of energy-transformations across membranes. Uncoupling is caused by a variety of physiological, pathological, toxicological, pharmacological and environmental conditions that exert an influence not only on the proton leak and cation cycling, but also on proton slip within the proton pumps and the structural integrity of the mitochondria. A more loosely coupled state is induced by stimulation of mitochondrial superoxide formation and the bypass of proton pumps. In addition, the use of protonophores represents an experimental uncoupling intervention to asses the transition from a well-coupled to a noncoupled state of mitochondrial respiration.
::::# Respiratory oxygen consumption rates have to be carefully normalized to enable meta-analytic studies beyond the question of a particular experiment. Therefore, all raw data on rates and variables for normalization should be published in an open access data repository. Normalization of rates for: (''1'') the number of objects (cells, organisms); (''2'') the volume or mass of the experimental sample; and (''3'') the concentration of mitochondrial markers in the experimental chamber are sample-specific normalizations, which are distinguished from system-specific normalization for the volume of the chamber (the measuring system).
::::# The consistent use of terms and symbols will facilitate transdisciplinary communication and support the further development of a collaborative database on bioenergetics and mitochondrial physiology. The present considerations are focused on studies with mitochondrial preparations. These will be extended in a series of reports on pathway control of mitochondrial respiration, respiratory states in intact cells, and harmonization of experimental procedures.       


[[File:SI-units.png|left|120px]]
== From Version 4 to 5 ==
On [https://www.euramet.org/publications-media-centre/news/?tx_news_pi1%5Bnews%5D=787&tx_news_pi1%5Baction%5D=detail&tx_news_pi1%5Bcontroller%5D=News World Metrology Day] (2019-05-20) the redefinition of the SI units came into force. At this occasion, Version 4 of the MitoEAGLE preprint on 'Mitochondrial respiratory rates and states' was released, in line with our emphasis on SI units for reporting data on mitochondrial respiratory physiology.


== Section 2: Oxidative phosphorylation and coupling states in mitochondrial preparations ==


[[File:Cell respiration and OXPHOS.png|left|500px|Cell respiration and OXPHOS]] '''Figure 2. Cell respiration and oxidative phosphorylation (OXPHOS)'''. Mitochondrial respiration is the utilization of fuel substrates (electron donors) for electron transfer to O<sub>2</sub> as the electron acceptor. For explanation of symbols see also Figure 1. ('''A''') Respiration in intact cells: Mitochondrial fuel substrates are the products of extra-mitochondrial catabolism of macrofuels or are taken up by the cell as small molecules. Many fuel substrates are catabolized to acetyl-CoA or glutamate, and further electron transfer reduces nicotinamide adenine dinucleotide to NADH or flavin adenine dinucleotide to FADH<sub>2</sub>. In aerobic respiration, electron transfer is coupled to the phosphorylation of ADP to ATP, with energy transformation mediated by the protonmotive force, pmf. Anabolic reactions are linked to catabolism, both by ATP as the intermediary energy currency and by small organic precursor molecules as building blocks for biosynthesis (not shown). Glycolysis involves substrate-level phosphorylation of ADP to ATP in fermentation without utilization of O<sub>2</sub>. In contrast, extra-mitochondrial oxidation of fatty acids and amino acids proceeds partially in peroxisomes without coupling to ATP production: acyl-CoA oxidase catalyzes the oxidation of FADH<sub>2</sub> with electron transfer to O<sub>2</sub>; amino acid oxidases oxidize flavin mononucleotide FMNH<sub>2</sub> or FADH<sub>2</sub>. Coenzyme Q, Q, and the cytochromes ''b'', ''c'', and ''aa''<sub>3</sub> are redox systems of the mitochondrial inner membrane, mtIM. Dashed arrows indicate the connection between the redox proton pumps (respiratory Complexes CI, CIII and CIV) and the transmembrane pmf. Mitochondrial outer membrane, mtOM; glycerol-3-phosphate, Gp; tricarboxylic acid cycle, TCA cycle.
== Preprints for [[Gentle Science]] ==
{{MitoFit preprint}}


('''B''') Respiration in mitochondrial preparations: The mitochondrial electron transfer system (ETS) is fuelled by diffusion and transport of substrates across the mitochondrial outer and inner membrane and consists of the matrix-ETS and membrane-ETS. ET-pathways are coupled to the phosphorylation-pathway. ET-pathways converge at the N-junction and Q-junction. Additional arrows indicate electron entry into the Q-junction through electron transferring flavoprotein, glycerophosphate dehydrogenase, dihydro-orotate dehydrogenase, choline dehydrogenase, and sulfide-ubiquinone oxidoreductase. The dotted arrow indicates the branched pathway of oxygen consumption by alternative quinol oxidase (AOX). The H<sup>+</sup><sub>pos</sub>/O<sub>2</sub> ratio is the outward proton flux from the matrix space to the positively (pos) charged vesicular compartment, divided by catabolic O<sub>2</sub> flux in the NADH-pathway. The H<sup>+</sup><sub>neg</sub>/P» ratio is the inward proton flux from the inter-membrane space to the negatively (neg) charged matrix space, divided by the flux of phosphorylation of ADP to ATP. These are not fixed stoichiometries due to ion leaks and proton slip.
== References ==


('''C''') OXPHOS coupling: O<sub>2</sub> flux through the catabolic ET-pathway, ''J''<sub>kO<small>2</small></sub>, is coupled by the H<big>+</big> circuit to flux through the phosphorylation-pathway of ADP to ATP, ''J''<sub>P»</sub>.
:::# Altmann R (1894) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Zweite vermehrte Auflage. Verlag Von Veit & Comp, Leipzig:160 pp. - [[Altmann 1894 Verlag Von Veit & Comp |»Bioblast link«]]
:::# Baggeto LG, Testa-Perussini R (1990) Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch Biochem Biophys 283:341-8.
:::# Beard DA (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 1(4):e36. - [[Beard 2005 PLOS Comput Biol |»Bioblast link«]]
:::# Benda C (1898) Weitere Mitteilungen über die Mitochondria. Verh Dtsch Physiol Ges:376-83.
:::# Birkedal R, Laasmaa M, Vendelin M (2014) The location of energetic compartments affects energetic communication in cardiomyocytes. Front Physiol 5:376.
:::# Blier PU, Dufresne F, Burton RS (2001) Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 17:400-6.
:::# Blier PU, Guderley HE (1993) Mitochondrial activity in rainbow trout red muscle: the effect of temperature on the ADP-dependence of ATP synthesis. J Exp Biol 176:145-58.
:::# Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends Genet 23:465-74.
:::# Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1-13. - [[Brown 1992 Biochem J |»Bioblast link«]]
:::# Burger G, Gray MW, Forget L, Lang BF (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418-38.
:::# Calvo SE, Klauser CR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Research 44:D1251-7.
:::# Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, Mootha VK (2017) Comparative analysis of mitochondrial N-termini from mouse, human, and yeast. Mol Cell Proteomics 16:512-23.
:::# Campos JC, Queliconi BB, Bozi LHM, Bechara LRG, Dourado PMM, Andres AM, Jannig PR, Gomes KMS, Zambelli VO, Rocha-Resende C, Guatimosim S, Brum PC, Mochly-Rosen D, Gottlieb RA, Kowaltowski AJ, Ferreira JCB (2017) Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy 13:1304-317. - [[Campos 2017 Autophagy |»Bioblast link«]]
:::# Canton M, Luvisetto S, Schmehl I, Azzone GF (1995) The nature of mitochondrial respiration and discrimination between membrane and pump properties. Biochem J 310:477-81. - [[Canton 1995 Biochem J |»Bioblast link«]]
:::# Carrico C, Meyer JG, He W, Gibson BW, Verdin E (2018) The mitochondrial acylome emerges: proteomics, regulation by Sirtuins, and metabolic and disease implications. Cell Metab 27:497-512. - [[Carrico 2018 Cell Metab |»Bioblast link«]]
:::# Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241-52. - [[Chan 2006 Cell |»Bioblast link«]]
:::# Chance B, Williams GR (1955a) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383-93. - [[Chance 1955 J Biol Chem-I |»Bioblast link«]]
:::# Chance B, Williams GR (1955b) Respiratory enzymes in oxidative phosphorylation: III. The steady state. J Biol Chem 217:409-27. - [[Chance 1955 J Biol Chem-III |»Bioblast link«]]
:::# Chance B, Williams GR (1955c) Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J Biol Chem 217:429-38. - [[Chance 1955 J Biol Chem-IV |»Bioblast link«]]
:::# Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65-134. - [[Chance 1956 Adv Enzymol Relat Subj Biochem |»Bioblast link«]]
:::# Chowdhury SK, Djordjevic J, Albensi B, Fernyhough P (2015) Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Biosci Rep 36:e00286. - [[Chowdhury 2015 Biosci Rep |»Bioblast link«]]
:::# Cobb LJ, Lee C, Xiao J, Yen K, Wong RG, Nakamura HK, Mehta HH, Gao Q, Ashur C, Huffman DM, Wan J, Muzumdar R, Barzilai N, Cohen P (2016) Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY) 8:796-809.
:::# Cohen ER, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor HL (2008) Quantities, units and smbols in physical chemistry, IUPAC Green Book, 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge. - [[Cohen 2008 IUPAC Green Book |»Bioblast link«]]
:::# Cooper H, Hedges LV, Valentine JC, eds (2009) The handbook of research synthesis and meta-analysis. Russell Sage Foundation.
:::# Coopersmith J (2010) Energy, the subtle concept. The discovery of Feynman’s blocks from Leibnitz to Einstein. Oxford University Press:400 pp. - [[Coopersmith 2010 Oxford Univ Press |»Bioblast link«]]
:::# Cummins J (1998) Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172-82.
:::# Dai Q, Shah AA, Garde RV, Yonish BA, Zhang L, Medvitz NA, Miller SE, Hansen EL, Dunn CN, Price TM (2013) A truncated progesterone receptor (PR-M) localizes to the mitochondrion and controls cellular respiration. Mol Endocrinol 27:741-53.
:::# Daum B, Walter A, Horst A, Osiewacz HD, Kühlbrandt W (2013) Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci U S A 110:15301-6. - [[Daum 2013 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::# Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE, Chandel NS (2019) Mitochondrial Complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab 1:158–71. - [[Diebold 2019 Nat Metab |»Bioblast link«]]
:::# Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26:192-205.
:::# Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E (2018) High-Resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibres from small biopsies of muscle, and isolated mitochondria. Methods Mol Biol 1782 (Palmeira CM, Moreno AJ, eds): Mitochondrial Bioenergetics, 978-1-4939-7830-4. - [[Doerrier 2018 Methods Mol Biol |»Bioblast link«]]
:::# Doskey CM, van ‘t Erve TJ, Wagner BA, Buettner GR (2015) Moles of a substance per cell is a highly informative dosing metric in cell culture. PLoS One 10:e0132572.
:::# Drahota Z, Milerová M, Stieglerová A, Houstek J, Ostádal B (2004) Developmental changes of cytochrome c oxidase and citrate synthase in rat heart homogenate. Physiol Res 53:119-22.
:::# Duarte FV, Palmeira CM, Rolo AP (2014) The role of microRNAs in mitochondria: small players acting wide. Genes (Basel) 5:865-86.
:::# Ehinger JK, Morota S, Hansson MJ, Paul G, Elmér E (2015) Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. J Neurol 262:1493-503. - [[Ehinger 2015 J Neurol |»Bioblast link«]]
:::# Ehinger JK, Piel S, Ford R, Karlsson M, Sjövall F, Frostner EÅ, Morota S, Taylor RW, Turnbull DM, Cornell C, Moss SJ, Metzsch C, Hansson MJ, Fliri H, Elmér E (2016) Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun 7:12317. - [[Ehinger 2016 Nat Commun |»Bioblast link«]]
:::# Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s-55s. - [[Ernster 1981 J Cell Biol |»Bioblast link«]]
:::# Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods Enzymol 10:41-7. - [[Estabrook 1967 Methods Enzymol |»Bioblast link«]]
:::# Faber C, Zhu ZJ, Castellino S, Wagner DS, Brown RH, Peterson RA, Gates L, Barton J, Bickett M, Hagerty L, Kimbrough C, Sola M, Bailey D, Jordan H, Elangbam CS (2014) Cardiolipin profiles as a potential biomarker of mitochondrial health in diet-induced obese mice subjected to exercise, diet-restriction and ephedrine treatment. J Appl Toxicol 34:1122-9.
:::# Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR (2012) The fragmented mitochondrial ribosomal RNAs of ''Plasmodium falciparum''. PLoS One 7:e38320.
:::# Fell D (1997) Understanding the control of metabolism. Portland Press. - [https://www.researchgate.net/publication/317369476_Understanding_the_Control_of_Metabolism »ResearchGate«]
:::# Forstner H, Gnaiger E (1983) Calculation of equilibrium oxygen concentration. In: Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Gnaiger E, Forstner H (eds), Springer, Berlin, Heidelberg, New York:321-33. - [[Forstner 1983 POS |»Bioblast link«]]
:::# Garlid KD, Beavis AD, Ratkje SK (1989) On the nature of ion leaks in energy-transducing membranes. Biochim Biophys Acta 976:109-20. - [[Garlid 1989 Biochim Biophys Acta |»Bioblast link«]]
:::# Garlid KD, Semrad C, Zinchenko V. Does redox slip contribute significantly to mitochondrial respiration? In: Schuster S, Rigoulet M, Ouhabi R, Mazat J-P, eds (1993) Modern trends in biothermokinetics. Plenum Press, New York, London:287-93. - [[Garlid 1993 BTK |»Bioblast link«]]
:::# Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL, Mooga VP, Stroud DA, Kulkarni G, Wenk MR, Rehling P, Meisinger C, Ryan MT, Wiedemann N, Greenberg ML, Pfanner N (2009) Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr Biol 19:2133-9. - [[Gebert 2009 Curr Biol |»Bioblast link«]]
:::# Gerö D, Szabo C (2016) Glucocorticoids suppress mitochondrial oxidant production via upregulation of uncoupling protein 2 in hyperglycemic endothelial cells. PLoS One 11:e0154813.
:::# Gibney E (2018) Largest overhaul of scientific units since 1875 wins approval. Nature 563:451–2. - [https://www.nature.com/articles/d41586-018-07424-8 nature.com]
:::# Gnaiger E (1993a) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving Hypoxia: Mechanisms of Control and Adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G, eds. CRC Press, Boca Raton, Ann Arbor, London, Tokyo:77-109. - [[Gnaiger 1993 Hypoxia |»Bioblast link«]]
:::# Gnaiger E (1993b) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65:1983-2002. - [[Gnaiger 1993 Pure Appl Chem |»Bioblast link«]]
:::# Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277-97. - [[Gnaiger 2001 Respir Physiol |»Bioblast link«]]
:::# Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837-45. - [[Gnaiger 2009 Int J Biochem Cell Biol |»Bioblast link«]]
:::# Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 4th ed. Mitochondr Physiol Network 19.12. Oroboros MiPNet Publications, Innsbruck:80 pp. - [[Gnaiger 2014 MitoPathways |»Bioblast link«]]
:::# Gnaiger E, Méndez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci USA 97:11080-5. - [[Gnaiger 2000 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::# Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X, Conde Alonso S, Ofori E, Auwerx J, Cantó C, Amati F (2017) Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab 25:301-11. - [[Greggio 2017 Cell Metab |»Bioblast link«]]
:::# Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1-11. - [[Hinkle 2005 Biochim Biophys Acta |»Bioblast link«]]
:::# Hofstadter DR (1979) Gödel, Escher, Bach: An eternal golden braid. A metaphorical fugue on minds and machines in the spirit of Lewis Carroll. Harvester Press:499 pp. - [[Hofstadter 1979 Harvester Press |»Bioblast link«]]
:::# Illaste A, Laasmaa M, Peterson P, Vendelin M (2012) Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells. Biophys J 102:739-48.
:::# Jasienski M, Bazzaz FA (1999) The fallacy of ratios and the testability of models in biology. Oikos 84:321-26.
:::# Jepihhina N, Beraud N, Sepp M, Birkedal R, Vendelin M (2011) Permeabilized rat cardiomyocyte response demonstrates intracellular origin of diffusion obstacles. Biophys J 101:2112-21.
:::# Jezek P, Holendova B, Garlid KD, Jaburek M (2018) Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid Redox Signal 29:667-714. - [[Jezek 2018 Antioxid Redox Signal |»Bioblast link«]]
:::# Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274-84.
:::# Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA, Calderone JA, Huang L, Divakaruni AS, Tomsig JL, Okabe K, Lo RH, Cameron Coleman G, Columbus L, Yan Z, Saucerman JJ, Smith JS, Holmes JW, Lynch KR, Ravichandran KS, Uchiyama S, Santos WL, Rogers GW, Okusa MD, Bayliss DA, Hoehn KL (2013) Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab 3:114-23. - [[Kenwood 2013 Mol Metab |»Bioblast link«]]
:::# Klepinin A, Ounpuu L, Guzun R, Chekulayev V, Timohhina N, Tepp K, Shevchuk I, Schlattner U, Kaambre T (2016) Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr 48:531-48. - [[Klepinin 2016 J Bioenerg Biomembr |»Bioblast link«]]
:::# Koit A, Shevchuk I, Ounpuu L, Klepinin A, Chekulayev V, Timohhina N, Tepp K, Puurand M,Truu L, Heck K, Valvere V, Guzun R, Kaambre T (2017) Mitochondrial respiration in human colorectal and breast cancer clinical material is regulated differently. Oxid Med Cell Longev 1372640. - [[Koit 2017 Oxid Med Cell Longev |»Bioblast link«]]
:::# Komlódi T, Tretter L (2017) Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle. Neuropharmacology 123:287-98. - [[Komlodi 2017 Neuropharmacology |»Bioblast link«]]
:::# Korn E (1969) Cell membranes: structure and synthesis. Annu Rev Biochem 38:263–88.
:::# Lai N, M Kummitha C, Rosca MG, Fujioka H, Tandler B, Hoppel CL (2018) Isolation of mitochondrial subpopulations from skeletal muscle: optimizing recovery and preserving integrity. Acta Physiol (Oxf):e13182. doi: 10.1111/apha.13182.
:::# Lane N (2005) Power, sex, suicide: mitochondria and the meaning of life. Oxford University Press:354 pp. - [[Lane 2005 Oxford Univ Press |»Bioblast link«]]
:::# Larsen S, Nielsen J, Neigaard Nielsen C, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel RC, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349-60. - [[Larsen 2012 J Physiol |»Bioblast link«]]
:::# Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de Cabo R, Cohen P (2015) The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 21:443-54.
:::# Lee SR, Kim HK, Song IS, Youm J, Dizon LA, Jeong SH, Ko TH, Heo HJ, Ko KS, Rhee BD, Kim N, Han J (2013) Glucocorticoids and their receptors: insights into specific roles in mitochondria. Prog Biophys Mol Biol 112:44-54.
:::# Leek BT, Mudaliar SR, Henry R, Mathieu-Costello O, Richardson RS (2001) Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280:R441-7.
:::# Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177-96. - [[Lemasters 1998 Biochim Biophys Acta |»Bioblast link«]]
:::# Lemieux H, Blier PU, Gnaiger E (2017) Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 7:2840. - [[Lemieux 2017 Sci Rep |»Bioblast link«]]
:::# Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–38. - [[Lemieux 2011 Int J Biochem Cell Biol |»Bioblast link«]]
:::# Lenaz G, Tioli G, Falasca AI, Genova ML (2017) Respiratory supercomplexes in mitochondria. In: Mechanisms of primary energy trasduction in biology. M Wikstrom (ed) Royal Society of Chemistry Publishing, London, UK:296-337.
:::# Ling C, Rönn T (2019) Epigenetics in human obesity and type 2 diabetes. Cell Metab 29:1028-44. https://doi.org/10.1016/j.cmet.2019.03.009. - [[Ling 2019 Cell Metab |»Bioblast link«]]
:::# Lisowski P, Kannan P, Mlody B, Prigione A (2018) Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 19:e45432. - [[Lisowski 2018 EMBO Rep |»Bioblast link«]]
:::# Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L (2016) Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 17:1006.
:::# Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, Wang X, Li Z, Dell S, Brown J, Chen SM, Chien YH, Hwu WL, Fan PC, Wong LJ, Atwal PS, Huang T (2018) Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A doi: 10.1073/pnas.1810946115. - [[Luo 2018 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::# Margulis L (1970) Origin of eukaryotic cells. New Haven: Yale University Press.
:::# McDonald AE, Vanlerberghe GC, Staples JF (2009) Alternative oxidase in animals: unique characteristics and taxonomic distribution. J Exp Biol 212:2627-34.
:::# McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361:462-9. - [[McKenzie 2006 J Mol Biol |»Bioblast link«]]
:::# Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534-40.
:::# Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE (2007) Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol (1985) 103:21-7.
:::# Menshikova EV, Ritov VB, Toledo FG, Ferrell RE, Goodpaster BH, Kelley DE (2005) Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab 288:E818-25.
:::# Miller GA (1991) The science of words. Scientific American Library New York:276 pp. - [[Miller 1991 Scientific American Library |»Bioblast link«]]
:::# Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144-8. - [[Mitchell 1961 Nature |»Bioblast link«]]
:::# Mitchell P (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta Bioenergetics 1807:1507-38. - [[Mitchell 2011 Biochim Biophys Acta |»Bioblast link«]]
:::# Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, Højlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592-9.
:::# Mohr PJ, Phillips WD (2015) Dimensionless units in the SI. Metrologia 52:40-7.
:::# Moreno M, Giacco A, Di Munno C, Goglia F (2017) Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Mol Cell Endocrinol 7207:30092-8.
:::# Morrow RM, Picard M, Derbeneva O, Leipzig J, McManus MJ, Gouspillou G, Barbat-Artigas S, Dos Santos C, Hepple RT, Murdock DG, Wallace DC (2017) Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A 114:2705-10. - [[Morrow 2017 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::# Murley A, Nunnari J (2016) The emerging network of mitochondria-organelle contacts. Mol Cell 61:648-53.
:::# National Academies of Sciences, Engineering, and Medicine (2018) International coordination for science data infrastructure: Proceedings of a workshop—in brief. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/25015. - [[National Academies of Sciences, Engineering, and Medicine 2018 Science data infrastructure |»Bioblast link«]]
:::# Oemer G, Lackner L, Muigg K, Krumschnabel G, Watschinger K, Sailer S, Lindner H, Gnaiger E, Wortmann SB, Werner ER, Zschocke J, Keller MA (2018) The molecular structural diversity of mitochondrial cardiolipins. Proc Nat Acad Sci U S A 115:4158-63. - [[Oemer 2018 Proc Nat Acad Sci U S A |»Bioblast link«]]
:::# Palmfeldt J, Bross P (2017) Proteomics of human mitochondria. Mitochondrion 33:2-14.
:::# Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408-17. - [[Paradies 2014 Biochim Biophys Acta |»Bioblast link«]]
:::# Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol Biol 810:25-58. - [[Pesta 2012 Methods Mol Biol |»Bioblast link«]]
:::# Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87. - [[Pesta 2011 Am J Physiol Regul Integr Comp Physiol |»Bioblast link«]]
:::# Price TM, Dai Q (2015) The role of a mitochondrial progesterone receptor (PR-M) in progesterone action. Semin Reprod Med 33:185-94.
:::# Puchowicz MA, Varnes ME, Cohen BH, Friedman NR, Kerr DS, Hoppel CL (2004) Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria – case studies. Mitochondrion 4:377-85. - [[Puchowicz 2004 Mitochondrion |»Bioblast link«]]
:::# Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R (1995) mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. Am J Physiol 269:C619-25.
:::# Quiros PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17:213-26.
:::# Rackham O, Mercer TR, Filipovska A (2012) The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. WIREs RNA 3:675–95.
:::# Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17:2085-93. - [[Rackham 2011 RNA |»Bioblast link«]]
:::# Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D (1985) Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflugers Arch 404:1-9.
:::# Renner K, Amberger A, Konwalinka G, Gnaiger E (2003) Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta 1642:115-23. - [[Renner 2003 Biochim Biophys Acta |»Bioblast link«]]
:::# Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD (2016) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468-73.
:::# Rich P (2003) Chemiosmotic coupling: The cost of living. Nature 421:583. - [[Rich 2003 Nature |»Bioblast link«]]
:::# Rich PR (2013) Chemiosmotic theory. Encyclopedia Biol Chem 1:467-72. - [[Rich 2013 Encyclopedia Biol Chem |»Bioblast link«]]
:::# Roger JA, Munoz-Gomes SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177-92.
:::# Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, Sackett DL (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci USA 105:18746-51. - [[Rostovtseva 2008 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::# Rustin P, Parfait B, Chretien D, Bourgeron T, Djouadi F, Bastin J, Rötig A, Munnich A (1996) Fluxes of nicotinamide adenine dinucleotides through mitochondrial membranes in human cultured cells. J Biol Chem 271:14785-90.
:::# Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilised cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184:81-100. - [[Saks 1998 Mol Cell Biochem |»Bioblast link«]]
:::# Salabei JK, Gibb AA, Hill BG (2014) Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 9:421-38.
:::# Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375-88. - [[Sazanov 2015 Nat Rev Mol Cell Biol |»Bioblast link«]]
:::# Schneider TD (2006) Claude Shannon: biologist. The founder of information theory used biology to formulate the channel capacity. IEEE Eng Med Biol Mag 25:30-3.
:::# Schönfeld P, Dymkowska D, Wojtczak L (2009) Acyl-CoA-induced generation of reactive oxygen species in mitochondrial preparations is due to the presence of peroxisomes. Free Radic Biol Med 47:503-9. - [[Schoenfeld 2009 Free Radic Biol Med |»Bioblast link«]]
:::# Schultz J, Wiesner RJ (2000) Proliferation of mitochondria in chronically stimulated rabbit skeletal muscle--transcription of mitochondrial genes and copy number of mitochondrial DNA. J Bioenerg Biomembr 32:627-34.
:::# Simson P, Jepihhina N, Laasmaa M, Peterson P, Birkedal R, Vendelin M (2016) Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels. J Mol Cell Cardiol 97:197-203.
:::# Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, Xie SY, Zhou J, Ho JP, Chang CY, Wu Y, Giguère V, Bay BH, Vanacker JM, Ghosh S, Gauthier K, Hollenberg AN, McDonnell DP, Yen PM (2018) Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal 11(536) DOI: 10.1126/scisignal.aam5855. - [[Singh 2018 Sci Signal |»Bioblast link«]]
:::# Speijer D (2016) Being right on Q: shaping eukaryotic evolution. Biochem J 473:4103-27. - [[Speijer 2016 Biochem J |»Bioblast link«]]
:::# Stucki JW, Ineichen EA (1974) Energy dissipation by calcium recycling and the efficiency of calcium transport in rat-liver mitochondria. Eur J Biochem 48:365-75.
:::# Sugiura A, Mattie S, Prudent J, McBride HM (2017) Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542:251-4. - [[Sugiura 2017 Nature |»Bioblast link«]]
:::# Tonkonogi M, Harris B, Sahlin K (1997) Increased activity of citrate synthase in human skeletal muscle after a single bout of prolonged exercise. Acta Physiol Scand 161:435-6.
:::# Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107. eCollection 2016. - [[Torralba 2016 Front Cell Dev Biol |»Bioblast link«]]
:::# Vamecq J, Schepers L, Parmentier G, Mannaerts GP (1987) Inhibition of peroxisomal fatty acyl-CoA oxidase by antimycin A. Biochem J 248:603-7. - [[Vamecq 1987 Biochem J |»Bioblast link«]]
:::# Waczulikova I, Habodaszova D, Cagalinec M, Ferko M, Ulicna O, Mateasik A, Sikurova L, Ziegelhöffer A (2007) Mitochondrial membrane fluidity, potential, and calcium transients in the myocardium from acute diabetic rats. Can J Physiol Pharmacol 85:372-81.
:::# Wagner BA, Venkataraman S, Buettner GR (2011) The rate of oxygen utilization by cells.  Free Radic Biol Med 51:700-712.
:::# Wang H, Hiatt WR, Barstow TJ, Brass EP (1999) Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Eur J Appl Physiol Occup Physiol 80:22-7.
:::# Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823-7. - [[Watt 2010 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::# Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol 208:1635–44.
:::# White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17:4925–42.
:::# Wikström M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A 109:4431-6. - [[Wikstroem 2012 Proc Natl Acad Sci U S A |»Bioblast link«]]
:::# Williams EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, Houten SM, Amariuta T, Wolski W, Zamboni N, Aebersold R, Auwerx J (2016) Systems proteomics of liver mitochondria function. Science 352 (6291):aad0189
:::# Willis WT, Jackman MR, Messer JI, Kuzmiak-Glancy S, Glancy B (2016) A simple hydraulic analog model of oxidative phosphorylation. Med Sci Sports Exerc 48:990-1000.
:::# Yoshinaga MY, Kellermann MY, Valentine DL, Valentine RC (2016) Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes. Prog Lipid Res 64:1-15.
:::# Zíková A, Hampl V, Paris Z, Týč J, Lukeš J (2016) Aerobic mitochondria of parasitic protists: diverse genomes and complex functions. Mol Biochem Parasitol 209:46-57.  


('''D''') Phosphorylation-pathway catalyzed by the proton pump F<sub>1</sub>F<sub>O­</sub>-ATPase (F-ATPase, ATP synthase), adenine nucleotide translocase, and inorganic phosphate transporter. The H<sup>+</sup><sub>neg</sub>/P» stoichiometry is the sum of the coupling stoichiometry in the F-ATPase reaction (­2.7 H<sup>+</sup><sub>pos</sub> from the positive intermembrane space, 2.7 H<sup>+</sup><sub>neg</sub> to the matrix, ''i.e.'', the negative compartment) and the proton balance in the translocation of ADP<sup>3­-</sup>, ATP<sup>4-</sup> and P<sub>i</sub><sup>2-</sup>. Modified from (B) [[Lemieux_2017_Sci_Rep|Lemieux et al 2017]] and (C) [[Gnaiger_2014_MitoPathways#Chapter_1._Real-time_OXPHOS_analysis|Gnaiger 2014 MitoPathways]].


<gallery heights="350px" mode="default" perrow="4" widths="350px">
== Corrigendum ==
File:Uncoupling.png |'''Figure 3. Mechanisms of respiratory uncoupling.'''
File:OXPHOS compartments 1.png |'''Figure 4. Four-compartmental model of oxidative phosphorylation''' with respiratory states (ET, OXPHOS, LEAK) and corresponding rates (''E, P, L''). Modified from Gnaiger (2014).
File:LPE states.png |'''Figure 5. Respiratory coupling states.'''
File:Table Coupling states 1.png
File:Table Coupling terms.png
File:Table Chance states.png
</gallery>


::::* Section 2.5.4: Sulfur dioxygenase is related to ET, hence should not be listed here in relation to ''Rox''.


== Section 3: Normalization: fluxes and flows ==
== Comments and communication ==


<gallery heights="350px" mode="default" perrow="4" widths="350px">
::::» [[Talk:Gnaiger_2019_MitoFit_Preprint_Arch#2019-07-22_Circular_to_coauthors |2019-07-22 Circular to coauthors]]
File:Rate.png |'''Figure 6. Normalization of rate.''' '''(A)''' Cell respiration is normalized for (1) the experimental '''Sample''' (flow per object, mass-specific flux, or cell-volume-specific flux); or (2) for methodological reasons for the '''Chamber''' volume.
::::» [[Talk:Gnaiger_2019_MitoFit_Preprint_Arch#2019-03-12_Circular_to_coauthors |2019-03-12 Circular to coauthors]]
File:Flow in structure-function analysis.png |'''Figure 6B. Flow per cell''' [amol O<sub>2</sub>∙s<sup>-1</sup>∙cell<sup>-1</sup>] is the product of mitochondria-specific flux, mt-density and mass per cell. Unstructured analysis: performance is the product of mass-specific flux and size (mass per cell). Structured analysis: performance is the product of mitochondrial function (mt-specific flux) and structure (mt-content).
::::» [[Talk:Gnaiger_2019_MitoFit_Preprint_Arch#2019-02-12_Circular_to_coauthors |2019-02-12 Circular to coauthors]]


::::* [[Talk:Gnaiger_2019_MitoFit_Preprint_Arch#Comments |Comments]]


File:Table Sample concentrations and normalization of flux.png
File:Table Sample types.png
</gallery>


 
== Linking COST Actions and MiP''society'' ==
== Concept ==
:::: [[File:MITOEAGLE-logo.jpg|60px|link=http://www.bioblast.at/index.php/COST_Action_MitoEAGLE|COST Action MitoEAGLE]] [[File:COST Logo.jpg|160px|link=http://www.cost.eu/COST_Actions/ca/CA15203|e-COST MitoEAGLE]] [[File:EU-logo.jpg|80px|link=http://www.cost.eu/COST_Actions/ca/CA15203?parties|e-COST MitoEAGLE countries]] [[Image:MiPsocietyLOGO.JPG|100px|link=http://www.mitoglobal.org/index.php/Mitochondrial_Physiology_Society|MiP''society'']]
 
[[Gentle_Science#Preprints_for_Gentle_Science|'''Preprints for Gentle Science''']]
 
:::: Citation:  
:::: MitoEAGLE preprint 2018-11-30(Version 48). Mitochondrial respiratory states and rates. - [http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08 http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08]
 
:::: Acknowledgements: We thank M. Beno for management assistance. This publication is based upon work from [[MitoEAGLE|COST Action CA15203 MitoEAGLE]], supported by COST (European Cooperation in Science and Technology), and K-Regio project [[K-Regio_MitoFit|MitoFit]] (EG).     
 
:::: '''To co-authors, editors, reviewers, and readers'''
:::::: The global MitoEAGLE network made it possible to collaborate with more than 250 co-authors to reach consensus on the present manuscript. Nevertheless, we do not consider scientific progress to be supported by ‘declaration’ statements (other than on ethical or political issues). Our manuscript aims at providing arguments for further debate rather than pushing opinions. We hope to initiate a much broader process of discussion and want to raise the awareness on the importance of a consistent terminology for the reporting of scientific data in the field of bioenergetics, mitochondrial physiology and pathology. Quality of research requires quality of communication. Some established researchers in the field may not want to re-consider the use of jargon which has become established despite deficiencies of accuracy and meaning. In the long run, superior standards will become accepted. We hope to contribute to this evolutionary process, with an emphasis on harmonization rather than standardization.         
 
=== Authors ===
:::: '''This is an open invitation to scientists and students to join as co-authors''', to provide a balanced view on mitochondrial respiratory control and a consensus statement on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.      
 
::::* '''Co-authors''': ''Confirming to have read the final manuscript, possibly to have made additions or suggestions for improvement, and to agree to implement the recommendations into future manuscripts, presentations and teaching materials. (alphabetical)''       
 
:::: We continue to invite comments and suggestions, particularly if you are an '''early career investigator adding an open future-oriented perspective''', or an '''established scientist providing a balanced historical basis'''. Your critical input into the quality of the manuscript will be most welcome, improving our aims to be educational, general, consensus-oriented, and practically helpful for students working in mitochondrial respiratory physiology.
:::: To join as a co-author, please feel free to focus on a particular section, providing direct input and references, and contributing to the scope of the manuscript from the perspective of your expertise. Your comments will be largely posted on the [[Talk:MitoEAGLE_preprint_2018-02-08|discussion page of the MitoEAGLE preprint website]].
:::: If you prefer to submit comments in the format of a referee's evaluation rather than a contribution as a co-author, we will be glad to distribute your views to the updated list of co-authors for a balanced response. We would ask for your consent on this open bottom-up policy.     
 
=== Disclaimer ===
:::: This article was prepared while Joshua P. Fessel was employed at Vanderbilt University Medical Center. The opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.
 
=== Linking COST Actions ===
::::* [http://www.cost.eu/COST_Actions/ca/CA15203 COST Action CA15203 MitoEAGLE]
::::* [http://www.cost.eu/COST_Actions/ca/CA15203 COST Action CA15203 MitoEAGLE]
::::* [http://www.cost.eu/COST_Actions/ca/CA16225 COST Action CA16225 EU-CARDIOPROTECTION]
::::* [http://www.cost.eu/COST_Actions/ca/CA16225 COST Action CA16225 EU-CARDIOPROTECTION]
Line 166: Line 207:




== The MitoFit preprint ==
{{MitoEAGLE preprint 1 Phases}}
{{MitoEAGLE preprint 1 Phases}}
{{NextGen-O2k H2020-support}}
::::* [http://www.mitoeagle.org/index.php/File:MitoEAGLE_preprint_States_and_rates.pdf Versions towards the MitoFit Preprint]
::::* [http://www.mitoeagle.org/index.php/Talk:MitoEAGLE_Task_Group_States_and_rates Discussion towards the MitoFit Preprint]


:::::: We plan a series of follow-up reports by the expanding MitoEAGLE Network, to increase the scope of harmonization and facilitate global communication and collaboration. Further discussions: [[COST_Action_MitoEAGLE#Chronological_list_of_MitoEAGLE_Events|MitoEAGLE events]].         
== Cited by ==
 
{{Template:Cited by Gnaiger 2019 MitoFit Preprints}}
 
== MitoEAGLE preprint 1: Poster ==
[[File:MitoEAGLE-preprint1 Poster.jpg|960px]]
 
::::* Presented at [[MiPschool Tromso-Bergen 2018]]
::::* Presented at [[EBEC2018 Budapest HU]]
 
== Letter to the Editors of scientific journals ==
 
:::: Dear Editors:     
 
:::: We would like to ask you for your opinion about the increasingly urgent issue of '''nomenclature in mitochondrial physiology'''.     
 
:::: With your collaboration our goal is to make publications with data on mitochondrial respiration more generally comprehensible and data more universally useful by bringing better standardization of nomenclature and data presentation to the field.     
 
:::: '''As the knowledge base and importance of mitochondrial physiology to human health expand, the necessity for harmonizing nomenclature concerning mitochondrial respiratory states and rates has become increasingly apparent. In the frame of COST Action MitoEAGLE, we endeavour to provide a balanced view on mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration. Uniform standards for evaluation of respiratory states and rates will ultimately support the development of databases of mitochondrial respiratory function in species, tissues, and cells.'''     
 
:::: A Working Group of the COST Action MitoEAGLE is preparing a document on ‘'''Mitochondrial respiratory states and rates'''’. The group is working on it with Open Access as a ‘MitoEAGLE preprint’ and the ultimate aim of publication in a scientific journal:
::::* '''pdf preprint''':&nbsp;» [http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08 http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08]
::::* '''Executive summary''':&nbsp;» [http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08#Executive_summary http://www.mitoeagle.org/index.php/MitoEAGLE_preprint_2018-02-08#Executive_summary]       
 
:::: We would like to include your opinion as editor. We aim at providing a list of journals, from whom we received valuable feedback:
::::# Do you recognize a general need for a consensus on nomenclature and standards of reporting in the field of mitochondrial respiratory physiology?
::::# Can you provide comments and suggestions for the MitoEAGLE preprint: 'Mitochondrial respiratory states and rates’ from your point of view as an editor?
::::# Which further steps do you suggest towards implementing a harmonized terminology on mitochondrial states and rates in your editorial policy?       
 
:::: I thank you for your considerations.
:::: With kind regards,     
 
[[File:MITOEAGLE-logo.jpg|left|100px|COST Action MITOEAGLE|link=http://www.mitoglobal.org/index.php/MITOEAGLE]]
 
:::: Erich Gnaiger, Ph.D.
:::: ''Chair COST Action CA15203 MitoEAGLE'' - [http://www.mitoeagle.org http://www.mitoeagle.org]
:::: ''Chair Mitochondrial Physiology Society'' - [http://www.mitophysiology.org http://www.mitophysiology.org]
:::: Medical University of Innsbruck
:::: Department of Visceral, Transplant and Thoracic Surgery
:::: D. Swarovski Research Laboratory
:::: A-6020 Innsbruck, Austria
:::: Email: [email protected]     
 
:::» [[Talk:MitoEAGLE_preprint_2018-02-08#Pre-submission_correspondence_with_editors |'''Correspondence''']]
 
 
== MitoPedia ==
 
::::» [[MitoPedia: Respiratory states]]
::::» [[MitoPedia: Ergodynamics]]
::::» [[MitoPedia: Respirometry]]
::::» [[MitoPedia: Substrates and metabolites]]
::::» [[MitoPedia: Uncouplers]]
::::» [[MitoPedia: Inhibitors]]
{{Labeling
|area=Respiration, mt-Awareness
|preparations=Permeabilized cells, Permeabilized tissue, Homogenate, Isolated mitochondria
|enzymes=Marker enzyme
|topics=Coupling efficiency;uncoupling, Flux control, mt-Membrane potential, Uncoupler
|couplingstates=LEAK, OXPHOS, ET
|pathways=F, N, S, Gp, DQ, CIV, NS, Other combinations, ROX
|additional=MitoFitPublication, MitoEAGLE, MitoEAGLEPublication
}}

Latest revision as of 08:27, 8 January 2023


MitoFit Preprints         MitoFit Preprints        
Gnaiger 2019 MitoFit Preprints
       
Gnaiger MitoFit Preprints 2020.4
        MitoFit DOI Data Center         MitoPedia: Preprints         Bioenergetics Communications


Gnaiger 2019 MitoFit Preprints

Publications in the MiPMap
Gnaiger E, Aasander Frostner E, Abdul Karim N, Abdel-Rahman EA, Abumrad NA, Acuna-Castroviejo D, Adiele RC, et al (2019) Mitochondrial respiratory states and rates. https://doi.org/10.26124/mitofit:190001.v6. — Published: 2020-05-20 Mitochondrial physiology. Bioenerg Commun 2020.1. https://doi.org/10.26124/bec:2020-0001.v1

» MitoFit Preprint Arch 2019.1.v6

MitoFit pdf

Mitochondrial respiratory states and rates



MitoFit Prep 2019.1.v6. (2019) MitoFit Prep

Abstract: Version 6 (v6) 2019-08-30 doi:10.26124/mitofit:190001.v6

Versions (v5) 2019-07-24; (v4) 2019-05-20; (v3) 2019-04-24; (v2) 2019-03-15; (v1) 2019-02-12 - »Link to all versions«
Published online: 2020-05-20
» Gnaiger Erich et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. doi:10.26124/bec:2020-0001.v1. »Bioblast link«

As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow guidelines of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols to the nomenclature of classical bioenergetics. We endeavour to provide a balanced view on mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of databases of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery. Keywords: Mitochondrial respiratory control, coupling control, mitochondrial preparations, protonmotive force, uncoupling, oxidative phosphorylation, OXPHOS, efficiency, electron transfer, ET; proton leak, LEAK, residual oxygen consumption, ROX, State 2, State 3, State 4, normalization, flow, flux, O2 Bioblast editor: Gnaiger E

Authors: MitoEAGLE Task Group

Figure 1. Internal and external respiration. Mitochondrial respiration is the oxidation of fuel substrates (electron donors) and reduction of O2 catalysed by the electron transfer system, ETS: (mt) mitochondrial catabolic respiration; (ce) total cellular O2 consumption; and (ext) external respiration. All chemical reactions, r, that consume O2 in the cells of an organism, contribute to cell respiration, JrO2. In addition to mitochondrial catabolic respiration, O2 is consumed by: (1) Mitochondrial residual oxygen consumption, Rox. (2) Non-mitochondrial O2 consumption by catabolic reactions, particularly peroxisomal oxidases and microsomal cytochrome P450 systems. (3) Non-mitochondrial Rox by reactions unrelated to catabolism. (4) Extracellular Rox. (5) Aerobic microbial respiration. Bars are not at a quantitative scale.
  • Corresponding author
Erich Gnaiger
Chair COST Action CA15203 MitoEAGLE
T +43 512 566796 15, F +43 512 566796 20
[email protected] | www.mitoeagle.org
  • Coauthors (listed in alphabetical order); number of coauthors (2019-09-16): 621
Many coauthors have made significant additions and suggestions for improvement of the manuscript. All coauthors confirm to have read the final manuscript, and to agree to implement the recommendations into future manuscripts, presentations and teaching materials.
Disclaimer: This article was prepared while Joshua P. Fessel was employed at Vanderbilt University Medical Center. The opinions expressed in this article are the author's own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government.
  • Copyright: © 2019 Gnaiger et al.
This is an Open Access preprint (not peer-reviewed) distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited. © remains with the authors, who have granted MitoFit an Open Access preprint licence in perpetuity.
  • Mailing list
If you have read this paper and wish to be included in our mailing list, then see » MitoEAGLE Newsletter


SI-units.png

From Version 4 to 5

On World Metrology Day (2019-05-20) the redefinition of the SI units came into force. At this occasion, Version 4 of the MitoEAGLE preprint on 'Mitochondrial respiratory rates and states' was released, in line with our emphasis on SI units for reporting data on mitochondrial respiratory physiology.


Preprints for Gentle Science

MitoFit Preprints.png

» MitoFit Preprints - the Open Access preprint server for mitochondrial physiology and bioenergetics

» MitoPedia: Preprints

References

  1. Altmann R (1894) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Zweite vermehrte Auflage. Verlag Von Veit & Comp, Leipzig:160 pp. - »Bioblast link«
  2. Baggeto LG, Testa-Perussini R (1990) Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch Biochem Biophys 283:341-8.
  3. Beard DA (2005) A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput Biol 1(4):e36. - »Bioblast link«
  4. Benda C (1898) Weitere Mitteilungen über die Mitochondria. Verh Dtsch Physiol Ges:376-83.
  5. Birkedal R, Laasmaa M, Vendelin M (2014) The location of energetic compartments affects energetic communication in cardiomyocytes. Front Physiol 5:376.
  6. Blier PU, Dufresne F, Burton RS (2001) Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 17:400-6.
  7. Blier PU, Guderley HE (1993) Mitochondrial activity in rainbow trout red muscle: the effect of temperature on the ADP-dependence of ATP synthesis. J Exp Biol 176:145-58.
  8. Breton S, Beaupré HD, Stewart DT, Hoeh WR, Blier PU (2007) The unusual system of doubly uniparental inheritance of mtDNA: isn't one enough? Trends Genet 23:465-74.
  9. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284:1-13. - »Bioblast link«
  10. Burger G, Gray MW, Forget L, Lang BF (2013) Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists. Genome Biol Evol 5:418-38.
  11. Calvo SE, Klauser CR, Mootha VK (2016) MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Research 44:D1251-7.
  12. Calvo SE, Julien O, Clauser KR, Shen H, Kamer KJ, Wells JA, Mootha VK (2017) Comparative analysis of mitochondrial N-termini from mouse, human, and yeast. Mol Cell Proteomics 16:512-23.
  13. Campos JC, Queliconi BB, Bozi LHM, Bechara LRG, Dourado PMM, Andres AM, Jannig PR, Gomes KMS, Zambelli VO, Rocha-Resende C, Guatimosim S, Brum PC, Mochly-Rosen D, Gottlieb RA, Kowaltowski AJ, Ferreira JCB (2017) Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy 13:1304-317. - »Bioblast link«
  14. Canton M, Luvisetto S, Schmehl I, Azzone GF (1995) The nature of mitochondrial respiration and discrimination between membrane and pump properties. Biochem J 310:477-81. - »Bioblast link«
  15. Carrico C, Meyer JG, He W, Gibson BW, Verdin E (2018) The mitochondrial acylome emerges: proteomics, regulation by Sirtuins, and metabolic and disease implications. Cell Metab 27:497-512. - »Bioblast link«
  16. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241-52. - »Bioblast link«
  17. Chance B, Williams GR (1955a) Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem 217:383-93. - »Bioblast link«
  18. Chance B, Williams GR (1955b) Respiratory enzymes in oxidative phosphorylation: III. The steady state. J Biol Chem 217:409-27. - »Bioblast link«
  19. Chance B, Williams GR (1955c) Respiratory enzymes in oxidative phosphorylation. IV. The respiratory chain. J Biol Chem 217:429-38. - »Bioblast link«
  20. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17:65-134. - »Bioblast link«
  21. Chowdhury SK, Djordjevic J, Albensi B, Fernyhough P (2015) Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria. Biosci Rep 36:e00286. - »Bioblast link«
  22. Cobb LJ, Lee C, Xiao J, Yen K, Wong RG, Nakamura HK, Mehta HH, Gao Q, Ashur C, Huffman DM, Wan J, Muzumdar R, Barzilai N, Cohen P (2016) Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers. Aging (Albany NY) 8:796-809.
  23. Cohen ER, Cvitas T, Frey JG, Holmström B, Kuchitsu K, Marquardt R, Mills I, Pavese F, Quack M, Stohner J, Strauss HL, Takami M, Thor HL (2008) Quantities, units and smbols in physical chemistry, IUPAC Green Book, 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge. - »Bioblast link«
  24. Cooper H, Hedges LV, Valentine JC, eds (2009) The handbook of research synthesis and meta-analysis. Russell Sage Foundation.
  25. Coopersmith J (2010) Energy, the subtle concept. The discovery of Feynman’s blocks from Leibnitz to Einstein. Oxford University Press:400 pp. - »Bioblast link«
  26. Cummins J (1998) Mitochondrial DNA in mammalian reproduction. Rev Reprod 3:172-82.
  27. Dai Q, Shah AA, Garde RV, Yonish BA, Zhang L, Medvitz NA, Miller SE, Hansen EL, Dunn CN, Price TM (2013) A truncated progesterone receptor (PR-M) localizes to the mitochondrion and controls cellular respiration. Mol Endocrinol 27:741-53.
  28. Daum B, Walter A, Horst A, Osiewacz HD, Kühlbrandt W (2013) Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria. Proc Natl Acad Sci U S A 110:15301-6. - »Bioblast link«
  29. Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE, Chandel NS (2019) Mitochondrial Complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab 1:158–71. - »Bioblast link«
  30. Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26:192-205.
  31. Doerrier C, Garcia-Souza LF, Krumschnabel G, Wohlfarter Y, Mészáros AT, Gnaiger E (2018) High-Resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibres from small biopsies of muscle, and isolated mitochondria. Methods Mol Biol 1782 (Palmeira CM, Moreno AJ, eds): Mitochondrial Bioenergetics, 978-1-4939-7830-4. - »Bioblast link«
  32. Doskey CM, van ‘t Erve TJ, Wagner BA, Buettner GR (2015) Moles of a substance per cell is a highly informative dosing metric in cell culture. PLoS One 10:e0132572.
  33. Drahota Z, Milerová M, Stieglerová A, Houstek J, Ostádal B (2004) Developmental changes of cytochrome c oxidase and citrate synthase in rat heart homogenate. Physiol Res 53:119-22.
  34. Duarte FV, Palmeira CM, Rolo AP (2014) The role of microRNAs in mitochondria: small players acting wide. Genes (Basel) 5:865-86.
  35. Ehinger JK, Morota S, Hansson MJ, Paul G, Elmér E (2015) Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients. J Neurol 262:1493-503. - »Bioblast link«
  36. Ehinger JK, Piel S, Ford R, Karlsson M, Sjövall F, Frostner EÅ, Morota S, Taylor RW, Turnbull DM, Cornell C, Moss SJ, Metzsch C, Hansson MJ, Fliri H, Elmér E (2016) Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat Commun 7:12317. - »Bioblast link«
  37. Ernster L, Schatz G (1981) Mitochondria: a historical review. J Cell Biol 91:227s-55s. - »Bioblast link«
  38. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods Enzymol 10:41-7. - »Bioblast link«
  39. Faber C, Zhu ZJ, Castellino S, Wagner DS, Brown RH, Peterson RA, Gates L, Barton J, Bickett M, Hagerty L, Kimbrough C, Sola M, Bailey D, Jordan H, Elangbam CS (2014) Cardiolipin profiles as a potential biomarker of mitochondrial health in diet-induced obese mice subjected to exercise, diet-restriction and ephedrine treatment. J Appl Toxicol 34:1122-9.
  40. Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR (2012) The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. PLoS One 7:e38320.
  41. Fell D (1997) Understanding the control of metabolism. Portland Press. - »ResearchGate«
  42. Forstner H, Gnaiger E (1983) Calculation of equilibrium oxygen concentration. In: Polarographic Oxygen Sensors. Aquatic and Physiological Applications. Gnaiger E, Forstner H (eds), Springer, Berlin, Heidelberg, New York:321-33. - »Bioblast link«
  43. Garlid KD, Beavis AD, Ratkje SK (1989) On the nature of ion leaks in energy-transducing membranes. Biochim Biophys Acta 976:109-20. - »Bioblast link«
  44. Garlid KD, Semrad C, Zinchenko V. Does redox slip contribute significantly to mitochondrial respiration? In: Schuster S, Rigoulet M, Ouhabi R, Mazat J-P, eds (1993) Modern trends in biothermokinetics. Plenum Press, New York, London:287-93. - »Bioblast link«
  45. Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL, Mooga VP, Stroud DA, Kulkarni G, Wenk MR, Rehling P, Meisinger C, Ryan MT, Wiedemann N, Greenberg ML, Pfanner N (2009) Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr Biol 19:2133-9. - »Bioblast link«
  46. Gerö D, Szabo C (2016) Glucocorticoids suppress mitochondrial oxidant production via upregulation of uncoupling protein 2 in hyperglycemic endothelial cells. PLoS One 11:e0154813.
  47. Gibney E (2018) Largest overhaul of scientific units since 1875 wins approval. Nature 563:451–2. - nature.com
  48. Gnaiger E (1993a) Efficiency and power strategies under hypoxia. Is low efficiency at high glycolytic ATP production a paradox? In: Surviving Hypoxia: Mechanisms of Control and Adaptation. Hochachka PW, Lutz PL, Sick T, Rosenthal M, Van den Thillart G, eds. CRC Press, Boca Raton, Ann Arbor, London, Tokyo:77-109. - »Bioblast link«
  49. Gnaiger E (1993b) Nonequilibrium thermodynamics of energy transformations. Pure Appl Chem 65:1983-2002. - »Bioblast link«
  50. Gnaiger E (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol 128:277-97. - »Bioblast link«
  51. Gnaiger E (2009) Capacity of oxidative phosphorylation in human skeletal muscle. New perspectives of mitochondrial physiology. Int J Biochem Cell Biol 41:1837-45. - »Bioblast link«
  52. Gnaiger E (2014) Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 4th ed. Mitochondr Physiol Network 19.12. Oroboros MiPNet Publications, Innsbruck:80 pp. - »Bioblast link«
  53. Gnaiger E, Méndez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci USA 97:11080-5. - »Bioblast link«
  54. Greggio C, Jha P, Kulkarni SS, Lagarrigue S, Broskey NT, Boutant M, Wang X, Conde Alonso S, Ofori E, Auwerx J, Cantó C, Amati F (2017) Enhanced respiratory chain supercomplex formation in response to exercise in human skeletal muscle. Cell Metab 25:301-11. - »Bioblast link«
  55. Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1-11. - »Bioblast link«
  56. Hofstadter DR (1979) Gödel, Escher, Bach: An eternal golden braid. A metaphorical fugue on minds and machines in the spirit of Lewis Carroll. Harvester Press:499 pp. - »Bioblast link«
  57. Illaste A, Laasmaa M, Peterson P, Vendelin M (2012) Analysis of molecular movement reveals latticelike obstructions to diffusion in heart muscle cells. Biophys J 102:739-48.
  58. Jasienski M, Bazzaz FA (1999) The fallacy of ratios and the testability of models in biology. Oikos 84:321-26.
  59. Jepihhina N, Beraud N, Sepp M, Birkedal R, Vendelin M (2011) Permeabilized rat cardiomyocyte response demonstrates intracellular origin of diffusion obstacles. Biophys J 101:2112-21.
  60. Jezek P, Holendova B, Garlid KD, Jaburek M (2018) Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid Redox Signal 29:667-714. - »Bioblast link«
  61. Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Žárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274-84.
  62. Kenwood BM, Weaver JL, Bajwa A, Poon IK, Byrne FL, Murrow BA, Calderone JA, Huang L, Divakaruni AS, Tomsig JL, Okabe K, Lo RH, Cameron Coleman G, Columbus L, Yan Z, Saucerman JJ, Smith JS, Holmes JW, Lynch KR, Ravichandran KS, Uchiyama S, Santos WL, Rogers GW, Okusa MD, Bayliss DA, Hoehn KL (2013) Identification of a novel mitochondrial uncoupler that does not depolarize the plasma membrane. Mol Metab 3:114-23. - »Bioblast link«
  63. Klepinin A, Ounpuu L, Guzun R, Chekulayev V, Timohhina N, Tepp K, Shevchuk I, Schlattner U, Kaambre T (2016) Simple oxygraphic analysis for the presence of adenylate kinase 1 and 2 in normal and tumor cells. J Bioenerg Biomembr 48:531-48. - »Bioblast link«
  64. Koit A, Shevchuk I, Ounpuu L, Klepinin A, Chekulayev V, Timohhina N, Tepp K, Puurand M,Truu L, Heck K, Valvere V, Guzun R, Kaambre T (2017) Mitochondrial respiration in human colorectal and breast cancer clinical material is regulated differently. Oxid Med Cell Longev 1372640. - »Bioblast link«
  65. Komlódi T, Tretter L (2017) Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle. Neuropharmacology 123:287-98. - »Bioblast link«
  66. Korn E (1969) Cell membranes: structure and synthesis. Annu Rev Biochem 38:263–88.
  67. Lai N, M Kummitha C, Rosca MG, Fujioka H, Tandler B, Hoppel CL (2018) Isolation of mitochondrial subpopulations from skeletal muscle: optimizing recovery and preserving integrity. Acta Physiol (Oxf):e13182. doi: 10.1111/apha.13182.
  68. Lane N (2005) Power, sex, suicide: mitochondria and the meaning of life. Oxford University Press:354 pp. - »Bioblast link«
  69. Larsen S, Nielsen J, Neigaard Nielsen C, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel RC, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349-60. - »Bioblast link«
  70. Lee C, Zeng J, Drew BG, Sallam T, Martin-Montalvo A, Wan J, Kim SJ, Mehta H, Hevener AL, de Cabo R, Cohen P (2015) The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab 21:443-54.
  71. Lee SR, Kim HK, Song IS, Youm J, Dizon LA, Jeong SH, Ko TH, Heo HJ, Ko KS, Rhee BD, Kim N, Han J (2013) Glucocorticoids and their receptors: insights into specific roles in mitochondria. Prog Biophys Mol Biol 112:44-54.
  72. Leek BT, Mudaliar SR, Henry R, Mathieu-Costello O, Richardson RS (2001) Effect of acute exercise on citrate synthase activity in untrained and trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 280:R441-7.
  73. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177-96. - »Bioblast link«
  74. Lemieux H, Blier PU, Gnaiger E (2017) Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 7:2840. - »Bioblast link«
  75. Lemieux H, Semsroth S, Antretter H, Höfer D, Gnaiger E (2011) Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. Int J Biochem Cell Biol 43:1729–38. - »Bioblast link«
  76. Lenaz G, Tioli G, Falasca AI, Genova ML (2017) Respiratory supercomplexes in mitochondria. In: Mechanisms of primary energy trasduction in biology. M Wikstrom (ed) Royal Society of Chemistry Publishing, London, UK:296-337.
  77. Ling C, Rönn T (2019) Epigenetics in human obesity and type 2 diabetes. Cell Metab 29:1028-44. https://doi.org/10.1016/j.cmet.2019.03.009. - »Bioblast link«
  78. Lisowski P, Kannan P, Mlody B, Prigione A (2018) Mitochondria and the dynamic control of stem cell homeostasis. EMBO Rep 19:e45432. - »Bioblast link«
  79. Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L (2016) Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 17:1006.
  80. Luo S, Valencia CA, Zhang J, Lee NC, Slone J, Gui B, Wang X, Li Z, Dell S, Brown J, Chen SM, Chien YH, Hwu WL, Fan PC, Wong LJ, Atwal PS, Huang T (2018) Biparental inheritance of mitochondrial DNA in humans. Proc Natl Acad Sci U S A doi: 10.1073/pnas.1810946115. - »Bioblast link«
  81. Margulis L (1970) Origin of eukaryotic cells. New Haven: Yale University Press.
  82. McDonald AE, Vanlerberghe GC, Staples JF (2009) Alternative oxidase in animals: unique characteristics and taxonomic distribution. J Exp Biol 212:2627-34.
  83. McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361:462-9. - »Bioblast link«
  84. Menshikova EV, Ritov VB, Fairfull L, Ferrell RE, Kelley DE, Goodpaster BH (2006) Effects of exercise on mitochondrial content and function in aging human skeletal muscle. J Gerontol A Biol Sci Med Sci 61:534-40.
  85. Menshikova EV, Ritov VB, Ferrell RE, Azuma K, Goodpaster BH, Kelley DE (2007) Characteristics of skeletal muscle mitochondrial biogenesis induced by moderate-intensity exercise and weight loss in obesity. J Appl Physiol (1985) 103:21-7.
  86. Menshikova EV, Ritov VB, Toledo FG, Ferrell RE, Goodpaster BH, Kelley DE (2005) Effects of weight loss and physical activity on skeletal muscle mitochondrial function in obesity. Am J Physiol Endocrinol Metab 288:E818-25.
  87. Miller GA (1991) The science of words. Scientific American Library New York:276 pp. - »Bioblast link«
  88. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144-8. - »Bioblast link«
  89. Mitchell P (2011) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta Bioenergetics 1807:1507-38. - »Bioblast link«
  90. Mogensen M, Sahlin K, Fernström M, Glintborg D, Vind BF, Beck-Nielsen H, Højlund K (2007) Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes 56:1592-9.
  91. Mohr PJ, Phillips WD (2015) Dimensionless units in the SI. Metrologia 52:40-7.
  92. Moreno M, Giacco A, Di Munno C, Goglia F (2017) Direct and rapid effects of 3,5-diiodo-L-thyronine (T2). Mol Cell Endocrinol 7207:30092-8.
  93. Morrow RM, Picard M, Derbeneva O, Leipzig J, McManus MJ, Gouspillou G, Barbat-Artigas S, Dos Santos C, Hepple RT, Murdock DG, Wallace DC (2017) Mitochondrial energy deficiency leads to hyperproliferation of skeletal muscle mitochondria and enhanced insulin sensitivity. Proc Natl Acad Sci U S A 114:2705-10. - »Bioblast link«
  94. Murley A, Nunnari J (2016) The emerging network of mitochondria-organelle contacts. Mol Cell 61:648-53.
  95. National Academies of Sciences, Engineering, and Medicine (2018) International coordination for science data infrastructure: Proceedings of a workshop—in brief. Washington, DC: The National Academies Press. doi: https://doi.org/10.17226/25015. - »Bioblast link«
  96. Oemer G, Lackner L, Muigg K, Krumschnabel G, Watschinger K, Sailer S, Lindner H, Gnaiger E, Wortmann SB, Werner ER, Zschocke J, Keller MA (2018) The molecular structural diversity of mitochondrial cardiolipins. Proc Nat Acad Sci U S A 115:4158-63. - »Bioblast link«
  97. Palmfeldt J, Bross P (2017) Proteomics of human mitochondria. Mitochondrion 33:2-14.
  98. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408-17. - »Bioblast link«
  99. Pesta D, Gnaiger E (2012) High-resolution respirometry. OXPHOS protocols for human cells and permeabilized fibres from small biopsies of human muscle. Methods Mol Biol 810:25-58. - »Bioblast link«
  100. Pesta D, Hoppel F, Macek C, Messner H, Faulhaber M, Kobel C, Parson W, Burtscher M, Schocke M, Gnaiger E (2011) Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Am J Physiol Regul Integr Comp Physiol 301:R1078–87. - »Bioblast link«
  101. Price TM, Dai Q (2015) The role of a mitochondrial progesterone receptor (PR-M) in progesterone action. Semin Reprod Med 33:185-94.
  102. Puchowicz MA, Varnes ME, Cohen BH, Friedman NR, Kerr DS, Hoppel CL (2004) Oxidative phosphorylation analysis: assessing the integrated functional activity of human skeletal muscle mitochondria – case studies. Mitochondrion 4:377-85. - »Bioblast link«
  103. Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R (1995) mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. Am J Physiol 269:C619-25.
  104. Quiros PM, Mottis A, Auwerx J (2016) Mitonuclear communication in homeostasis and stress. Nat Rev Mol Cell Biol 17:213-26.
  105. Rackham O, Mercer TR, Filipovska A (2012) The human mitochondrial transcriptome and the RNA-binding proteins that regulate its expression. WIREs RNA 3:675–95.
  106. Rackham O, Shearwood AM, Mercer TR, Davies SM, Mattick JS, Filipovska A (2011) Long noncoding RNAs are generated from the mitochondrial genome and regulated by nuclear-encoded proteins. RNA 17:2085-93. - »Bioblast link«
  107. Reichmann H, Hoppeler H, Mathieu-Costello O, von Bergen F, Pette D (1985) Biochemical and ultrastructural changes of skeletal muscle mitochondria after chronic electrical stimulation in rabbits. Pflugers Arch 404:1-9.
  108. Renner K, Amberger A, Konwalinka G, Gnaiger E (2003) Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta 1642:115-23. - »Bioblast link«
  109. Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, Barry K, Boore JL, Zhang Y, dePamphilis CW, Knox EB, Palmer JD (2016) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468-73.
  110. Rich P (2003) Chemiosmotic coupling: The cost of living. Nature 421:583. - »Bioblast link«
  111. Rich PR (2013) Chemiosmotic theory. Encyclopedia Biol Chem 1:467-72. - »Bioblast link«
  112. Roger JA, Munoz-Gomes SA, Kamikawa R (2017) The origin and diversification of mitochondria. Curr Biol 27:R1177-92.
  113. Rostovtseva TK, Sheldon KL, Hassanzadeh E, Monge C, Saks V, Bezrukov SM, Sackett DL (2008) Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration. Proc Natl Acad Sci USA 105:18746-51. - »Bioblast link«
  114. Rustin P, Parfait B, Chretien D, Bourgeron T, Djouadi F, Bastin J, Rötig A, Munnich A (1996) Fluxes of nicotinamide adenine dinucleotides through mitochondrial membranes in human cultured cells. J Biol Chem 271:14785-90.
  115. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS (1998) Permeabilised cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184:81-100. - »Bioblast link«
  116. Salabei JK, Gibb AA, Hill BG (2014) Comprehensive measurement of respiratory activity in permeabilized cells using extracellular flux analysis. Nat Protoc 9:421-38.
  117. Sazanov LA (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat Rev Mol Cell Biol 16:375-88. - »Bioblast link«
  118. Schneider TD (2006) Claude Shannon: biologist. The founder of information theory used biology to formulate the channel capacity. IEEE Eng Med Biol Mag 25:30-3.
  119. Schönfeld P, Dymkowska D, Wojtczak L (2009) Acyl-CoA-induced generation of reactive oxygen species in mitochondrial preparations is due to the presence of peroxisomes. Free Radic Biol Med 47:503-9. - »Bioblast link«
  120. Schultz J, Wiesner RJ (2000) Proliferation of mitochondria in chronically stimulated rabbit skeletal muscle--transcription of mitochondrial genes and copy number of mitochondrial DNA. J Bioenerg Biomembr 32:627-34.
  121. Simson P, Jepihhina N, Laasmaa M, Peterson P, Birkedal R, Vendelin M (2016) Restricted ADP movement in cardiomyocytes: Cytosolic diffusion obstacles are complemented with a small number of open mitochondrial voltage-dependent anion channels. J Mol Cell Cardiol 97:197-203.
  122. Singh BK, Sinha RA, Tripathi M, Mendoza A, Ohba K, Sy JAC, Xie SY, Zhou J, Ho JP, Chang CY, Wu Y, Giguère V, Bay BH, Vanacker JM, Ghosh S, Gauthier K, Hollenberg AN, McDonnell DP, Yen PM (2018) Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Sci Signal 11(536) DOI: 10.1126/scisignal.aam5855. - »Bioblast link«
  123. Speijer D (2016) Being right on Q: shaping eukaryotic evolution. Biochem J 473:4103-27. - »Bioblast link«
  124. Stucki JW, Ineichen EA (1974) Energy dissipation by calcium recycling and the efficiency of calcium transport in rat-liver mitochondria. Eur J Biochem 48:365-75.
  125. Sugiura A, Mattie S, Prudent J, McBride HM (2017) Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 542:251-4. - »Bioblast link«
  126. Tonkonogi M, Harris B, Sahlin K (1997) Increased activity of citrate synthase in human skeletal muscle after a single bout of prolonged exercise. Acta Physiol Scand 161:435-6.
  127. Torralba D, Baixauli F, Sánchez-Madrid F (2016) Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol 4:107. eCollection 2016. - »Bioblast link«
  128. Vamecq J, Schepers L, Parmentier G, Mannaerts GP (1987) Inhibition of peroxisomal fatty acyl-CoA oxidase by antimycin A. Biochem J 248:603-7. - »Bioblast link«
  129. Waczulikova I, Habodaszova D, Cagalinec M, Ferko M, Ulicna O, Mateasik A, Sikurova L, Ziegelhöffer A (2007) Mitochondrial membrane fluidity, potential, and calcium transients in the myocardium from acute diabetic rats. Can J Physiol Pharmacol 85:372-81.
  130. Wagner BA, Venkataraman S, Buettner GR (2011) The rate of oxygen utilization by cells. Free Radic Biol Med 51:700-712.
  131. Wang H, Hiatt WR, Barstow TJ, Brass EP (1999) Relationships between muscle mitochondrial DNA content, mitochondrial enzyme activity and oxidative capacity in man: alterations with disease. Eur J Appl Physiol Occup Physiol 80:22-7.
  132. Watt IN, Montgomery MG, Runswick MJ, Leslie AG, Walker JE (2010) Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proc Natl Acad Sci U S A 107:16823-7. - »Bioblast link«
  133. Weibel ER, Hoppeler H (2005) Exercise-induced maximal metabolic rate scales with muscle aerobic capacity. J Exp Biol 208:1635–44.
  134. White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17:4925–42.
  135. Wikström M, Hummer G (2012) Stoichiometry of proton translocation by respiratory complex I and its mechanistic implications. Proc Natl Acad Sci U S A 109:4431-6. - »Bioblast link«
  136. Williams EG, Wu Y, Jha P, Dubuis S, Blattmann P, Argmann CA, Houten SM, Amariuta T, Wolski W, Zamboni N, Aebersold R, Auwerx J (2016) Systems proteomics of liver mitochondria function. Science 352 (6291):aad0189
  137. Willis WT, Jackman MR, Messer JI, Kuzmiak-Glancy S, Glancy B (2016) A simple hydraulic analog model of oxidative phosphorylation. Med Sci Sports Exerc 48:990-1000.
  138. Yoshinaga MY, Kellermann MY, Valentine DL, Valentine RC (2016) Phospholipids and glycolipids mediate proton containment and circulation along the surface of energy-transducing membranes. Prog Lipid Res 64:1-15.
  139. Zíková A, Hampl V, Paris Z, Týč J, Lukeš J (2016) Aerobic mitochondria of parasitic protists: diverse genomes and complex functions. Mol Biochem Parasitol 209:46-57.


Corrigendum

  • Section 2.5.4: Sulfur dioxygenase is related to ET, hence should not be listed here in relation to Rox.


Comments and communication

» 2019-07-22 Circular to coauthors
» 2019-03-12 Circular to coauthors
» 2019-02-12 Circular to coauthors


Linking COST Actions and MiPsociety

COST Action MitoEAGLE e-COST MitoEAGLE e-COST MitoEAGLE countries MiPsociety


The MitoFit preprint


Questions.jpg


Click to expand or collaps
» Manuscript phases and versions

Manuscript phases and versions - an open-access apporach

COST Action MitoEAGLE
This manuscript on ‘Mitochondrial respiratory states and rates’ is a position statement in the frame of COST Action CA15203 MitoEAGLE. The list of coauthors evolved beyond phase 1 in the bottom-up spirit of COST.
The global MitoEAGLE network made it possible to collaborate with a large number of coauthors to reach consensus on the present manuscript. Nevertheless, we do not consider scientific progress to be supported by ‘declaration’ statements (other than on ethical or political issues). Our manuscript aims at providing arguments for further debate rather than pushing opinions. We hope to initiate a much broader process of discussion and want to raise the awareness on the importance of a consistent terminology for reporting of scientific data in the field of bioenergetics, mitochondrial physiology and pathology. Quality of research requires quality of communication. Some established researchers in the field may not want to re-consider the use of jargon which has become established despite deficiencies of accuracy and meaning. In the long run, superior standards will become accepted. We hope to contribute to this evolutionary process, with an emphasis on harmonization rather than standardization.
  • Phase 1: The protonmotive force and respiratory control
» The protonmotive force and respiratory control - Discussion
» MitoEAGLE preprint 2017-09-21 - Discussion
  • Phase 2: Mitochondrial respiratory states and rates: Building blocks of mitochondrial physiology Part 1
» MitoEAGLE Task Group States and rates - Discussion
  • Phase 4: Journal submission
  • Target: CELL METABOLISM, aiming at indexing by The Web of Science and PubMed.
Coauthors
  • 2017-09-21 Version 01: 105 coauthors
  • 2017-10-15 Version 10: 131 coauthors
  • 2018-01-18 Version 20: 168 coauthors
  • 2018-02-26 Version 30: 225 coauthors
  • 2018-08-20 Version 40: 350 coauthors - EBEC Poster
  • 2018-10-17 Version 44: 426 coauthors - MiPschool Tromso-Bergen 2018
  • 2018-12-12 Version 50: 517 coauthors - Submission to the preprint server bioRxiv not successful
  • 2019-02-12 Preprint version 1: 530 coauthors
  • 2019-03-15 Preprint version 2: 533 coauthors
  • 2019-04-24 Preprint version 3: 533 coauthors
  • 2019-05-20 Preprint version 4: 542 coauthors
  • 2019-07-24 Preprint version 5: 612 coauthors
  • 2019-08-30 Preprint version 6: 622 coauthors - Preprint publication doi:10.26124/mitofit:190001.v6
  • BEC 2020.1. - Gnaiger Erich et al ― MitoEAGLE Task Group (2020) Mitochondrial physiology. Bioenerg Commun 2020.1. doi:10.26124/bec:2020-0001.v1. - »Bioblast link«


Template NextGen-O2k.jpg

Cited by

Gnaiger 2019 MitoFit Preprints


Gnaiger E (2019) Editorial: A vision on preprints for mitochondrial physiology and bioenergetics. MitoFit Preprint Arch doi:10.26124/mitofit:190002.v2.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.