Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Monoamine oxidases''' are enzymes bound to the outer membrane of mit". Since there have been only a few results, also nearby values are displayed.

Showing below up to 10 results starting with #1.

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Mitochondrial marker  + ('''Mitochondrial marker'''s are structural'''Mitochondrial marker'''s are structural or functional properties that are specific for mitochondria. A structural mt-marker is the area of the inner mt-membrane or mt-volume determined stereologically, which has its limitations due to different states of swelling. If mt-area is determined by electron microscopy, the statistical challenge has to be met to convert area into a volume. When fluorescent dyes are used as mt-marker, distinction is necessary between mt-membrane potential dependent and independent dyes. mtDNA or cardiolipin content may be considered as a mt-marker. [[Mitochondrial marker enzymes]] may be determined as molecular (amount of protein) or functional properties (enzyme activities). Respiratory capacity in a defined respiratory state of a mt-preparation can be considered as a functional mt-marker, in which case respiration in other respiratory states is expressed as [[flux control ratio]]s. » [[Mitochondrial marker#Mitochondrial markers and expression of mitochondrial respiration| '''MiPNet article''']][Mitochondrial marker#Mitochondrial markers and expression of mitochondrial respiration| '''MiPNet article''']])
  • Mitochondrial competence  + ('''Mitochondrial metabolic competence''' i'''Mitochondrial metabolic competence''' is the organelle's capacity to provide adequate amounts of ATP in due time, by adjusting the mt-membrane potential, mt-redox states and the ATP/ADP ratio according to the metabolic requirements of the cell.</br></br>The term '''mitochondrial competence''' is also known in a genetic context: Mammalian mitochondria possess a natural competence for DNA import.</br></br>'''''[[MitoCom_O2k-Fluorometer]]''''' is a '''Mitochondrial Competence''' network, the nucleus of which is formed by the K-Regio project ''[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.)
  • Mitochondrial preparations  + ('''Mitochondrial preparations''' (mtprep) '''Mitochondrial preparations''' (mtprep) are isolated mitochondria (imt), tissue homogenate (thom), mechanically or chemically permeabilized tissue (permeabilized fibers, pfi) or permeabilized cells (pce). In mtprep the plasma membranes are either removed (imt) or mechanically (thom) and chemically permeabilized (pfi), while mitochondrial functional integrity and to a large extent mt-structure are maintained in incubation media optimized to support mitochondrial physiological performance. According to this definition, submitochondrial particles (smtp) are not a mtprep, since mitochondrial structure is altered although specific mitochondrial functions are preserved.fic mitochondrial functions are preserved.)
  • Buffer Z  + ('''Mitochondrial respiration medium, Buffer Z''', described by [http://bioblast.at/index.php/Perry_2011_Biochem_J Perry 2011 Biochem J] For composition and comparison see: [[Mitochondrial respiration media: comparison]])
  • MiR05  + ('''Mitochondrial respiration medium, MiR05'''Mitochondrial respiration medium, MiR05''', developed for oxygraph incubations of [[mitochondrial preparations]]. Respiration of [[living cells]] may be assessed in MiR05 by adding pyruvate (P) as an external source. [[MiR06]] = MiR05 + catalase.</br>[[MiR05Cr]] = [[MiR05]] + creatine.[[MiR05]] + creatine.)
  • MiRK03  + ('''Mitochondrial respiration medium, MiRK03''', modified after a medium described by [[Komary 2010 Biochim Biophys Acta]], intended for use as medium for H2O2 production measurement with Amplex Red.)
  • MitoOx2  + ('''Mitochondrial respiration medium, MitoO'''Mitochondrial respiration medium, MitoOx2''', developed for oxygraph incubations of [[mitochondrial preparations]] to measure the H<sub>2</sub>O<sub>2</sub> production. MitoOx2 yields a higher optical sensitivity and lower "drift" (oxidation of the fluorophore precurcor without H<sub>2</sub>O<sub>2</sub> present) for Amplex UltraRed(R) than e.g. [[MiR05|MiR05]].[[MiR05|MiR05]].)
  • MiR06  + ('''Mitochondrial respiration medium, [[MiPNet14.13 Medium-MiR06|MiR06]]''', developed for oxygraph incubations of [[mitochondrial preparations]]. MiR06 = MiR05 plus [[catalase]]. MiR06Cr = MiR06 plus [[creatine]].)
  • Molar mass  + ('''Molar mass''' ''M'' is the mass of a c'''Molar mass''' ''M'' is the mass of a chemical compound divided by its amount-of-substance measured in moles. It is defined as ''M''<sub>B</sub> = ''m''/''n''<sub>B</sub>, where ''m'' is the total mass of a sample of pure substance and ''n''<sub>B</sub> is the amount of substance B given in moles. The definition applies to pure substance. The molar mass allows for converting between the mass of a substance and its amount for bulk quantities. It is calculated as the sum of standard atomic weights of all atoms that form one entity of the substance.</br></br>The appropriate [[SI base units]] is kg·mol<sup>-1</sup>. However, for historical as well as usability reasons, g·mol<sup>-1</sup> is almost always used instead.historical as well as usability reasons, g·mol<sup>-1</sup> is almost always used instead.)
  • Monoamine oxidase  + ('''Monoamine oxidases''' are enzymes boun'''Monoamine oxidases''' are enzymes bound to the outer membrane of mitochondria and they catalyze the oxidative deamination of monoamines. Oxygen is used to remove an amine group from a molecule, resulting in the corresponding aldehyde and ammonia. Monoamine oxidases contain the covalently bound cofactor [[FAD]] and are, thus, classified as flavoproteins.nd are, thus, classified as flavoproteins.)
 ('''Monoamine oxidases''' are enzymes bound to the outer membrane of mit)
  • Myxothiazol  + ('''Myxothiazol''' Myx is an inhibitor of [[Complex III]]'''Myxothiazol''' Myx is an inhibitor of [[Complex III]] (CIII). CIII also inhibits [[Complex I|CI]]. Myxothiazol binds to the Q<sub>o</sub> site of CIII (close to cytochrome ''b''<sub>L</sub>) and inhibits the transfer of electrons from reduced QH<sub>2</sub> to the Rieske iron sulfur protein.ons from reduced QH<sub>2</sub> to the Rieske iron sulfur protein.)
  • N-ethylmaleimide  + ('''N-ethylmaleimide''' is an organic compound that is derived from maleic acid and blocks endogenous Pi transport.)
  • NADH  + ('''NAD<sup>+</sup>''' and '''NADH''': see [[Nicotinamide adenine dinucleotide]].)
  • NADH calibration - DatLab  + ('''NADH calibration''')
  • NS e-input  + ('''NS e-input''' or the [[NS-pathway control state]]'''NS e-input''' or the [[NS-pathway control state]] is electron input from a combination of substrates for the [[N-pathway control state]] and [[S-pathway control state]] through Complexes [[CI]] and [[CII]] simultaneously into the [[Q-junction]]. NS e-input corresponds to [[TCA cycle]] function ''in vivo'', with [[convergent electron flow]] through the [[Electron transfer pathway]]. In [[Mitochondrial preparations|mt-preparations]], NS e-input requires addition not only of NADH- (N-) linked substrates (pyruvate&malate or glutamate&malate), but of succinate (S) simultaneously, since [[metabolite depletion]] in the absence of succinate prevents a significant stimulation of S-linked respiration. For more details, see: [[Additive effect of convergent electron flow]].[[Additive effect of convergent electron flow]].)
  • Nagarse  + ('''Nagarse''' is a broad specifity proteas'''Nagarse''' is a broad specifity protease from bacteria used to promote breakdown of the cellular structure of "hard" tissues such as skeletal muscle or heart mucsle that cannot be homogenized easily without treatment with a protease. Nagarse is frequently used in protocols for isolating mitochondria from muscle tissue.isolating mitochondria from muscle tissue.)
  • Nicotinamide adenine dinucleotide  + ('''Nicotinamide adenine dinucleotide''', N'''Nicotinamide adenine dinucleotide''', NAD<sup>+</sup> and NADH (pyridine nucleotide coenzymes, NAD and NADP), is an oxidation-reduction coenzyme (redox cofactor; compare [[FADH2 |FADH<sub>2</sub>]]). In the [[NADH electron transfer-pathway state]] fuelled by type N-substrates, mt-matrix dehydrogenases generate NADH, the substrate of [[Complex I]] (CI). The reduced N-substrate RH<sub>2</sub> is oxidized and NAD<sup>+</sup> is reduced to NADH,:::: RH<sub>2</sub> + NAD<sup>+</sup> → NADH + H<sup>+</sup> + RThe mt-NADH pool integrates the activity of the [[TCA cycle]] and various matrix dehydrogenases upstream of CI, and thus forms a junction or funnel of electron transfer to CI, the [[N-junction]] (compare [[F-junction]], [[Q-junction]]). NAD<sup>+</sup> and NADH are not permeable through the [[Mitochondrial inner membrane|mt-inner membrane]], mtIM. Therefore, an increase of mitochondrial respiration after the addition of NADH may indicate an alteration of the mtIM integrity. Cytosolic NADH is effectively made available for mitochondrial respiration through the [[malate-aspartate shuttle]] or [[Glycerophosphate_dehydrogenase_Complex|glycerophosphate dehydrogenase Complex]].Glycerophosphate_dehydrogenase_Complex|glycerophosphate dehydrogenase Complex]].)
  • Nitric oxide synthase  + ('''Nitric oxide synthase''', NOS, catalyzes the production of nitric oxide (NO•), which is a [[reactive nitrogen species]]. There are four types of NOS: neuronal NOS (nNOS), endothelial NOS (eNOS), inducible NOS (iNOS) and mitochondrial NOS (mtNOS).)
  • Normalization of rate  + ('''Normalization of rate''' (respiratory r'''Normalization of rate''' (respiratory rate, rate of hydrogen peroxide production, growth rate) is required to report experimental data. Normalization of rates leads to a diversity of formats. Normalization is guided by physicochemical principles, methodological considerations, and conceptual strategies. The challenges of measuring respiratory rate are matched by those of normalization. Normalization of rates for: (''1'') the number of objects (cells, organisms); (''2'') the volume or mass of the experimental sample; and (''3'') the concentration of mitochondrial markers in the instrumental chamber are sample-specific normalizations, which are distinguished from system-specific normalization for the volume of the instrumental chamber (the measuring system). Metabolic ''flow'', ''I'', per [[Count |countable]] object increases as the size of the object is increased. This confounding factor is eliminated by expressing rate as sample-mass specific or sample-volume specific ''flux'', ''J''. [[Flow]] is an [[extensive quantity]], whereas [[flux]] is a [[specific quantity]]. If the aim is to find differences in mitochondrial function independent of mitochondrial density, then normalization to a [[mitochondrial marker]] is imperative. [[Flux control ratio]]s and [[flux control efficiency |flux control efficiencies]] are based on internal normalization for rate in a reference state, are independent of externally measured markers and, therefore, are statistically robust. and, therefore, are statistically robust.)
  • Normothermia  + ('''Normothermia''' in endotherms is a stat'''Normothermia''' in endotherms is a state when body core temperature is regulated within standard limits. In humans, normothermia is considered as a body temperature of 36.4 to 37.8 °C. Normothermia, however, has a different definition in the context of [[ectotherms]].</br>» [[Normothermia#Normothermia:_from_endotherms_to_ectotherms | '''MiPNet article''']]Normothermia#Normothermia:_from_endotherms_to_ectotherms | '''MiPNet article''']])