Cookies help us deliver our services. By using our services, you agree to our use of cookies. More information

Search by property

From Bioblast

This page provides a simple browsing interface for finding entities described by a property and a named value. Other available search interfaces include the page property search, and the ask query builder.

Search by property

A list of all pages that have property "Description" with value "'''Overfitting''' in statistics is the act of mistaking noise for a sign". Since there have been only a few results, also nearby values are displayed.

Showing below up to 50 results starting with #1.

View (previous 100 | next 100) (20 | 50 | 100 | 250 | 500)


    

List of results

  • Mitochondrial content  + ('''Mitochondrial content''' per object ''X'' is ''mtE<sub><u>N</u>X</sub>'' = ''mtE''·''N<sub>X</sub>''<sup>-1</sup> [mtEU·x<sup>-1</sup>].)
  • Mitochondrial marker enzymes  + ('''Mitochondrial marker enzymes''' are enzymes that are specifically present in mitochondria, in the mt-matrix, the inner mt-membrane, the inter-membrane space, or the outer mt-membrane.)
  • Mitochondrial marker  + ('''Mitochondrial marker'''s are structural'''Mitochondrial marker'''s are structural or functional properties that are specific for mitochondria. A structural mt-marker is the area of the inner mt-membrane or mt-volume determined stereologically, which has its limitations due to different states of swelling. If mt-area is determined by electron microscopy, the statistical challenge has to be met to convert area into a volume. When fluorescent dyes are used as mt-marker, distinction is necessary between mt-membrane potential dependent and independent dyes. mtDNA or cardiolipin content may be considered as a mt-marker. [[Mitochondrial marker enzymes]] may be determined as molecular (amount of protein) or functional properties (enzyme activities). Respiratory capacity in a defined respiratory state of a mt-preparation can be considered as a functional mt-marker, in which case respiration in other respiratory states is expressed as [[flux control ratio]]s. » [[Mitochondrial marker#Mitochondrial markers and expression of mitochondrial respiration| '''MiPNet article''']][Mitochondrial marker#Mitochondrial markers and expression of mitochondrial respiration| '''MiPNet article''']])
  • Mitochondrial competence  + ('''Mitochondrial metabolic competence''' i'''Mitochondrial metabolic competence''' is the organelle's capacity to provide adequate amounts of ATP in due time, by adjusting the mt-membrane potential, mt-redox states and the ATP/ADP ratio according to the metabolic requirements of the cell.</br></br>The term '''mitochondrial competence''' is also known in a genetic context: Mammalian mitochondria possess a natural competence for DNA import.</br></br>'''''[[MitoCom_O2k-Fluorometer]]''''' is a '''Mitochondrial Competence''' network, the nucleus of which is formed by the K-Regio project ''[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.[[MitoCom_O2k-Fluorometer|MitoCom Tyrol]]''.)
  • Mitochondrial preparations  + ('''Mitochondrial preparations''' (mtprep) '''Mitochondrial preparations''' (mtprep) are isolated mitochondria (imt), tissue homogenate (thom), mechanically or chemically permeabilized tissue (permeabilized fibers, pfi) or permeabilized cells (pce). In mtprep the plasma membranes are either removed (imt) or mechanically (thom) and chemically permeabilized (pfi), while mitochondrial functional integrity and to a large extent mt-structure are maintained in incubation media optimized to support mitochondrial physiological performance. According to this definition, submitochondrial particles (smtp) are not a mtprep, since mitochondrial structure is altered although specific mitochondrial functions are preserved.fic mitochondrial functions are preserved.)
  • Buffer Z  + ('''Mitochondrial respiration medium, Buffer Z''', described by [http://bioblast.at/index.php/Perry_2011_Biochem_J Perry 2011 Biochem J] For composition and comparison see: [[Mitochondrial respiration media: comparison]])
  • MiR05  + ('''Mitochondrial respiration medium, MiR05'''Mitochondrial respiration medium, MiR05''', developed for oxygraph incubations of [[mitochondrial preparations]]. Respiration of [[living cells]] may be assessed in MiR05 by adding pyruvate (P) as an external source. [[MiR06]] = MiR05 + catalase.</br>[[MiR05Cr]] = [[MiR05]] + creatine.[[MiR05]] + creatine.)
  • MiRK03  + ('''Mitochondrial respiration medium, MiRK03''', modified after a medium described by [[Komary 2010 Biochim Biophys Acta]], intended for use as medium for H2O2 production measurement with Amplex Red.)
  • MitoOx2  + ('''Mitochondrial respiration medium, MitoO'''Mitochondrial respiration medium, MitoOx2''', developed for oxygraph incubations of [[mitochondrial preparations]] to measure the H<sub>2</sub>O<sub>2</sub> production. MitoOx2 yields a higher optical sensitivity and lower "drift" (oxidation of the fluorophore precurcor without H<sub>2</sub>O<sub>2</sub> present) for Amplex UltraRed(R) than e.g. [[MiR05|MiR05]].[[MiR05|MiR05]].)
  • MiR06  + ('''Mitochondrial respiration medium, [[MiPNet14.13 Medium-MiR06|MiR06]]''', developed for oxygraph incubations of [[mitochondrial preparations]]. MiR06 = MiR05 plus [[catalase]]. MiR06Cr = MiR06 plus [[creatine]].)
  • Molar mass  + ('''Molar mass''' ''M'' is the mass of a c'''Molar mass''' ''M'' is the mass of a chemical compound divided by its amount-of-substance measured in moles. It is defined as ''M''<sub>B</sub> = ''m''/''n''<sub>B</sub>, where ''m'' is the total mass of a sample of pure substance and ''n''<sub>B</sub> is the amount of substance B given in moles. The definition applies to pure substance. The molar mass allows for converting between the mass of a substance and its amount for bulk quantities. It is calculated as the sum of standard atomic weights of all atoms that form one entity of the substance.</br></br>The appropriate [[SI base units]] is kg·mol<sup>-1</sup>. However, for historical as well as usability reasons, g·mol<sup>-1</sup> is almost always used instead.historical as well as usability reasons, g·mol<sup>-1</sup> is almost always used instead.)
  • Monoamine oxidase  + ('''Monoamine oxidases''' are enzymes boun'''Monoamine oxidases''' are enzymes bound to the outer membrane of mitochondria and they catalyze the oxidative deamination of monoamines. Oxygen is used to remove an amine group from a molecule, resulting in the corresponding aldehyde and ammonia. Monoamine oxidases contain the covalently bound cofactor [[FAD]] and are, thus, classified as flavoproteins.nd are, thus, classified as flavoproteins.)
  • Myxothiazol  + ('''Myxothiazol''' Myx is an inhibitor of [[Complex III]]'''Myxothiazol''' Myx is an inhibitor of [[Complex III]] (CIII). CIII also inhibits [[Complex I|CI]]. Myxothiazol binds to the Q<sub>o</sub> site of CIII (close to cytochrome ''b''<sub>L</sub>) and inhibits the transfer of electrons from reduced QH<sub>2</sub> to the Rieske iron sulfur protein.ons from reduced QH<sub>2</sub> to the Rieske iron sulfur protein.)
  • N-ethylmaleimide  + ('''N-ethylmaleimide''' is an organic compound that is derived from maleic acid and blocks endogenous Pi transport.)
  • NADH  + ('''NAD<sup>+</sup>''' and '''NADH''': see [[Nicotinamide adenine dinucleotide]].)
  • NADH calibration - DatLab  + ('''NADH calibration''')
  • NS e-input  + ('''NS e-input''' or the [[NS-pathway control state]]'''NS e-input''' or the [[NS-pathway control state]] is electron input from a combination of substrates for the [[N-pathway control state]] and [[S-pathway control state]] through Complexes [[CI]] and [[CII]] simultaneously into the [[Q-junction]]. NS e-input corresponds to [[TCA cycle]] function ''in vivo'', with [[convergent electron flow]] through the [[Electron transfer pathway]]. In [[Mitochondrial preparations|mt-preparations]], NS e-input requires addition not only of NADH- (N-) linked substrates (pyruvate&malate or glutamate&malate), but of succinate (S) simultaneously, since [[metabolite depletion]] in the absence of succinate prevents a significant stimulation of S-linked respiration. For more details, see: [[Additive effect of convergent electron flow]].[[Additive effect of convergent electron flow]].)
  • Nagarse  + ('''Nagarse''' is a broad specifity proteas'''Nagarse''' is a broad specifity protease from bacteria used to promote breakdown of the cellular structure of "hard" tissues such as skeletal muscle or heart mucsle that cannot be homogenized easily without treatment with a protease. Nagarse is frequently used in protocols for isolating mitochondria from muscle tissue.isolating mitochondria from muscle tissue.)
  • Nicotinamide adenine dinucleotide  + ('''Nicotinamide adenine dinucleotide''', N'''Nicotinamide adenine dinucleotide''', NAD<sup>+</sup> and NADH (pyridine nucleotide coenzymes, NAD and NADP), is an oxidation-reduction coenzyme (redox cofactor; compare [[FADH2 |FADH<sub>2</sub>]]). In the [[NADH electron transfer-pathway state]] fuelled by type N-substrates, mt-matrix dehydrogenases generate NADH, the substrate of [[Complex I]] (CI). The reduced N-substrate RH<sub>2</sub> is oxidized and NAD<sup>+</sup> is reduced to NADH,:::: RH<sub>2</sub> + NAD<sup>+</sup> → NADH + H<sup>+</sup> + RThe mt-NADH pool integrates the activity of the [[TCA cycle]] and various matrix dehydrogenases upstream of CI, and thus forms a junction or funnel of electron transfer to CI, the [[N-junction]] (compare [[F-junction]], [[Q-junction]]). NAD<sup>+</sup> and NADH are not permeable through the [[Mitochondrial inner membrane|mt-inner membrane]], mtIM. Therefore, an increase of mitochondrial respiration after the addition of NADH may indicate an alteration of the mtIM integrity. Cytosolic NADH is effectively made available for mitochondrial respiration through the [[malate-aspartate shuttle]] or [[Glycerophosphate_dehydrogenase_Complex|glycerophosphate dehydrogenase Complex]].Glycerophosphate_dehydrogenase_Complex|glycerophosphate dehydrogenase Complex]].)
  • Nitric oxide synthase  + ('''Nitric oxide synthase''', NOS, catalyzes the production of nitric oxide (NO•), which is a [[reactive nitrogen species]]. There are four types of NOS: neuronal NOS (nNOS), endothelial NOS (eNOS), inducible NOS (iNOS) and mitochondrial NOS (mtNOS).)
  • Normalization of rate  + ('''Normalization of rate''' (respiratory r'''Normalization of rate''' (respiratory rate, rate of hydrogen peroxide production, growth rate) is required to report experimental data. Normalization of rates leads to a diversity of formats. Normalization is guided by physicochemical principles, methodological considerations, and conceptual strategies. The challenges of measuring respiratory rate are matched by those of normalization. Normalization of rates for: (''1'') the number of objects (cells, organisms); (''2'') the volume or mass of the experimental sample; and (''3'') the concentration of mitochondrial markers in the instrumental chamber are sample-specific normalizations, which are distinguished from system-specific normalization for the volume of the instrumental chamber (the measuring system). Metabolic ''flow'', ''I'', per [[Count |countable]] object increases as the size of the object is increased. This confounding factor is eliminated by expressing rate as sample-mass specific or sample-volume specific ''flux'', ''J''. [[Flow]] is an [[extensive quantity]], whereas [[flux]] is a [[specific quantity]]. If the aim is to find differences in mitochondrial function independent of mitochondrial density, then normalization to a [[mitochondrial marker]] is imperative. [[Flux control ratio]]s and [[flux control efficiency |flux control efficiencies]] are based on internal normalization for rate in a reference state, are independent of externally measured markers and, therefore, are statistically robust. and, therefore, are statistically robust.)
  • Normothermia  + ('''Normothermia''' in endotherms is a stat'''Normothermia''' in endotherms is a state when body core temperature is regulated within standard limits. In humans, normothermia is considered as a body temperature of 36.4 to 37.8 °C. Normothermia, however, has a different definition in the context of [[ectotherms]].</br>» [[Normothermia#Normothermia:_from_endotherms_to_ectotherms | '''MiPNet article''']]Normothermia#Normothermia:_from_endotherms_to_ectotherms | '''MiPNet article''']])
  • Nuclear respiratory factor 1  + ('''Nuclear respiratory factor 1''' is a transcription factor downstream of [[Peroxisome proliferator-activated receptor gamma coactivator 1-alpha|PGC-1alpha]] involved in coordinated expression of [[nDNA]] and [[mtDNA]].)
  • O-ring\Viton\12x1 mm  + ('''O-ring\[[Viton]]'''O-ring\[[Viton]]\12x1 mm''', for PVDF or PEEK O2k-Stoppers, box of 4 as spares.</br></br>Two spare boxes of this product are standard components of the [[O2k-Assembly Kit]] ([[O2k-FluoRespirometer]]) as well as the [[O2k-TPP+ ISE-Module]] and the [[O2k-NO Amp-Module]].[[O2k-NO Amp-Module]].)
  • O-ring\Viton\16x2 mm  + ('''O-ring\[[Viton]]\16x2 mm''', mounted on the [[O2k-Chamber Holder sV]].)
  • Oxygen calibration - DatLab  + ('''O2 calibration''' is the calibration in'''O2 calibration''' is the calibration in DatLab of the oxygen sensor. It is a prerequisite for obtaining accurate measurements of respiration. Accurate calibration of the oxygen sensor depends on (''1'') equilibration of the incubation medium with air oxygen partial pressure at the temperature defined by the experimenter; (''2'') zero oxygen calibration; (''3'') high stability of the POS signal tested for sufficiently long periods of time; (''4'') linearity of signal output with oxygen pressure in the range between oxygen saturation and zero oxygen pressure; and (''5'') accurate oxygen solubility for aqueous solutions for the conversion of partial oxygen pressure into oxygen concentration. The standard oxygen calibration procedure is described below for high-resolution respirometry with the calibration routine using instrumental calibration DL-Protocols in [[DatLab]].[[DatLab]].)
  • O2k info (view)  + ('''O2k info (view)''' displays the experim'''O2k info (view)''' displays the experimental settings from the selected file, but does not allow modifying them. The only exception is the O2 sensor number, that can be modified by clicking on the edit button below the field. If the sensor number is modified after the recording, a warning appears next to the field, for quality control, informing that it has been changed. If more previously recorded files are open while running a measurement, [[O2k control (active)]] will always show the settings of the active recording, while O2k info (view) will show the settings of the selected file. The O2k info (view) option is disabled when the current recording file is selected.en the current recording file is selected.)
  • O2k repair  + ('''O2k repair''' of defective hardware may'''O2k repair''' of defective hardware may require replacement of spare parts. Some electronic or mechanical defects may be solved only by repair of the O2k in the electronics workshop of Oroboros Instruments, ''e.g.'', a defective Peltier unit (temperature control).ective Peltier unit (temperature control).)
  • O2k status line  + ('''O2k status line''' is found above the [[O2k signal line]]'''O2k status line''' is found above the [[O2k signal line]]. It contains information about the chamber label, O2 calibration, amperometric calibration, potentiometric calibration, the [[block temperature]], the [[illumination]] in chambers, the TIP2k status and the [[Automatic pan]].[[Automatic pan]].)
  • O2k  + ('''O2k''' - [[Oroboros O2k]]: the modular system for [[high-resolution respirometry]].)
  • O2k-Amperometric OroboPOS Twin-Channel  + ('''O2k-Amperometric OroboPOS Twin-Channel''''O2k-Amperometric OroboPOS Twin-Channel''': Two-channel variable polarization voltage; current/voltage converter for the polarographic oxygen sensor (POS); amplifyer with digital gain settings (1x, 2x, 4x, 8x); A/D converter; output in the range -10 V to 10 V. Integral component of the [[O2k-Main Unit]].[[O2k-Main Unit]].)
  • O2k-Barometric Pressure Transducer  + ('''O2k-Barometric Pressure Transducer''', '''O2k-Barometric Pressure Transducer''', A/D converter and digital output to DatLab for continuous recording of [[barometric pressure]] [kPa or mmHg], integrated into the air calibration of the POS ([[MiPNet06.03 POS-calibration-SOP]]). Integral component of the [[O2k-Main Unit]]. The warranty on the accuracy of the signal obtained from the O2k-Barometric Pressure Transducer expires within three years.ure Transducer expires within three years.)
  • O2k-Electromagnetic Stirrer Twin-Control  + ('''O2k-Electromagnetic Stirrer Twin-Contro'''O2k-Electromagnetic Stirrer Twin-Control''' for smooth rotation of the [[Stirrer-Bar\white PVDF\15x6 mm|stirrer bars]] in the two [[O2k-chamber]]s; with slow-start function to prevent decoupling of the stirrer bar; regulated stirrer speed in the range of 100 to 800 rpm (decoupling may occur at higher stirrer speeds), independent for the two O2k-Chambers; automatic events sent to DatLab when the stirrer is switched on/off or when the rotation seed is changed by the experimenter. Integral component of the [[O2k-Main Unit]].[[O2k-Main Unit]].)
  • O2k-Main Power Cable  + ('''O2k-Main Power Cable''', for connecting the main unit to the power supply.)
  • O2k-Peltier Temperature Control  + ('''O2k-Peltier Temperature Control''': Bui'''O2k-Peltier Temperature Control''': Built-in electronic thermostat controlling temperature for two [[O2k-chamber]]s in the range of 4 to 47 °C; ±0.002 °C (at room temperature). Continuous recording of the O2k-Copper Block temperature with DatLab. Temperature change from 20 to 30 °C within 15 min; cooling from 30 to 20 °C within 20 min. Integral component of the [[O2k-Main Unit]]. The electronic temperature control of the O2k replaced the conventional water jacket.2k replaced the conventional water jacket.)
  • Obesity  + ('''Obesity''' is a disease resulting from '''Obesity''' is a disease resulting from excessive accumulation of body fat. In common obesity (non-syndromic obesity) excessive body fat is due to an obesogenic lifestyle with lack of physical exercise ('couch') and caloric surplus of food consumption ('potato'), causing several comorbidities which are characterized as preventable non-communicable diseases. Persistent [[body fat excess]] associated with deficits of physical activity induces a weight-lifting effect on increasing muscle mass with decreasing mitochondrial capacity. Body fat excess, therefore, correlates with [[body mass excess]] up to a critical stage of obesogenic lifestyle-induced [[sarcopenia]], when loss of muscle mass results in further deterioration of physical performance particularly at older age.cal performance particularly at older age.)
  • OctGM  + ('''OctGM''': [[Octanoylcarnitine]] & [[Glutamate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-015]], [[SUIT-016]], [[SUIT-017]])
  • OctGMS  + ('''OctGMS''': [[Octanoylcarnitine]] &[[Glutamate]] & [[Malate]]& [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocols:''' [[SUIT-016]], [[SUIT-017]])
  • OctM pathway control state  + ('''OctM''': [[Octanoylcarnitine]]'''OctM''': [[Octanoylcarnitine]] & [[Malate]].</br></br>'''MitoPathway control state:''' F</br></br>'''SUIT protocols:''' [[SUIT-002]], [[SUIT-015]], [[SUIT-016]], [[SUIT-017]]</br></br>Respiratory stimulation of the [[Fatty acid oxidation pathway control state| FAO-pathway]], F, by [[fatty acid]] FA in the presence of [[malate]] M. Malate is a [[NADH Electron transfer-pathway state |type N substrate]] (N), required for the F-pathway. In the presence of [[Malate-anaplerotic pathway control state|anaplerotic pathways]] (''e.g.'', [[Malic enzyme|mitochondrial malic enzyme, mtME]]) the F-pathway capacity is overestimated, if there is an added contribution of NADH-linked respiration, F(N) (see [[SUIT-002]]). The FA concentration has to be optimized to saturate the [[Fatty acid oxidation pathway control state| FAO-pathway]], without inhibiting or uncoupling respiration. Low concentration of [[malate]], typically 0.1 mM, does not saturate the [[N-pathway]]; but saturates the [[Fatty acid oxidation pathway control state |F-pathway]]. High concentration of [[malate]], typically 2 mM, saturates the [[N-pathway]].[[N-pathway]].)
  • OctPGM pathway control state  + ('''OctPGM''': [[Octanoylcarnitine]]'''OctPGM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocols:''' [[SUIT-002]]</br>:This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<1 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate and glutamate is added to compare FAO as the background state with FN as the reference state.O as the background state with FN as the reference state.)
  • OctPGMS pathway control state  + ('''OctPGMS''': [[Octanoylcarnitine]]'''OctPGMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]].</br></br>'''MitoPathway control state:''' [[FNS]]</br></br>'''SUIT protocol:''' [[SUIT-001]], [[SUIT-002]], [[SUIT-015]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPGMSGp pathway control state  + ('''OctPGMSGp''': [[Octanoylcarnitine]]'''OctPGMSGp''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]].</br></br>'''MitoPathway control state:''' FNSGp</br></br>'''SUIT protocol:''' [[SUIT-002]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • OctPM pathway control state  + ('''OctPM''': [[Octanoylcarnitine]]'''OctPM''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]].</br></br>'''MitoPathway control state:''' [[FN]]</br></br>'''SUIT protocol:''' [[SUIT-002]], [[SUIT-005]]</br></br>This substrate combination supports N-linked flux which is typically higher than FAO capacity (F/FN<0 in the OXPHOS state). In SUIT-RP1, PMOct is induced after PM(E), to evaluate any additive effect of adding Oct. In SUIT-RP2, FAO OXPHOS capacity is measured first, testing for the effect of increasing malate concentration (compare [[malate-anaplerotic pathway control state]], M alone), and pyruvate is added to compare FAO as the background state with FN as the reference state. the background state with FN as the reference state.)
  • OctPMS  + ('''OctPMS''': [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]] & [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocol:''' [[SUIT-005]])
  • Octanoate  + ('''Octanoate''' (octanoic acid). C<sub>8</sub>H<sub>16</sub>O<sub>2</sub> Common name: Caprylic acid.)
  • Octanoylcarnitine  + ('''Octanoylcarnitine''' is a medium-chain fatty acid (octanoic acid: eight-carbon saturated fatty acid) covalently linked to [[carnitine]], frequently applied as a substrate for [[fatty acid oxidation]] (FAO) in [[mitochondrial preparations]].)
  • Oligomycin  + ('''Oligomycin''' (Omy) is an inhibitor of '''Oligomycin''' (Omy) is an inhibitor of [[ATP synthase]] by blocking its proton channel (Fo subunit), which is necessary for oxidative phosphorylation of ADP to ATP (energy production). The inhibition of ATP synthesis also inhibits respiration. In OXPHOS analysis, Omy is used to induce a [[LEAK respiration]] state of respiration (abbreviated as ''L''(Omy) to differentiate from ''L''(n), LEAK state in the absence of ADP).L''(n), LEAK state in the absence of ADP).)
  • Optics  + ('''Optics''' are the components that are u'''Optics''' are the components that are used to relay and focus light through a [[spectrofluorometer]] or [[spectrophotometer]]. These would normally consist of lenses and/or concave mirrors. The number of such components should be kept to a minimum due to the losses of light (5-10%) that occur at each surface. light (5-10%) that occur at each surface.)
  • Ouabain  + ('''Ouabain''' (synonym: G-strophantin octa'''Ouabain''' (synonym: G-strophantin octahydrate) is a poisonous cardiac glycoside. The classical mechanism of action of ouabain involves its binding to and inhibition of the plasma membrane Na+/K+-ATPase (sodium pump) especially at the higher concentrations. Low (nanomolar and subnanomolar) concentrations of ouabain stimulate the Na-K-ATPase.ions of ouabain stimulate the Na-K-ATPase.)
  • Overfitting  + ('''Overfitting''' in statistics is the act'''Overfitting''' in statistics is the act of mistaking noise for a signal. Overfitting makes a model look ‘’better’’ on paper but perform ‘’worse’’ in the real world. This may make it easier to get the model published in an academic journal or to sell to a client, crowding out more honest models from the marketplace. But if the model is fitting noise, it has the potential to hurt the science (quoted from [[Silver 2012 Penguin Press]]).nguin Press]]).)
 ('''Overfitting''' in statistics is the act of mistaking noise for a sign)
  • Overlay of plots - DatLab  + ('''Overlay of plots''' is defined in DatLa'''Overlay of plots''' is defined in DatLab as selection of graph layouts showing identical plots from the two O2k-chambers in each graph. Overlay of plots is selected in [[Graph layout - DatLab |Graph layout]]. Superimposed traces of flux/flow from chambers A and B are then shown in Graph 1, and of concentration in chambers A and B in Graph 2.</br></br>There are basically two ways to superimpose traces recorded in different experiments: Export of the graphics via windows metafile or export of the data to e.g. a spreadsheet program.</br></br>If you export via wmf you also can manipulate the graphics but then usually the lines are broken up in different segments. This can be done in various programs like MS Word, Open Office Draw and even in MSPower Point, though this maybe is the worst program to do this. It is better to manipulate them in a proper program like OO Draw, convert it to an unchangeable picture and then import it to a presentation graphics. Anyway, when you import directly to Power point (or other programs), make sure not to import it as a "picture" but as a metafile. Also in some programs you might afterwards have to "break" it up, or accept a "conversion to a MS Draw object" or other similar linguistic inventions of the software gurus. For this option we suggest to do as much as possible directly in DatLab (setting colors, line widths, ..) using the options in "Plots"/"select plots" and "graph"/"options". </br></br>The “hardcore“ option is to export the data and import it into e.g. a spreadsheet program (MS Excel , OOCalc). It takes longer to have a simple overlay but gives you far less problems later and its easier to make changes later. To do this you can export your dataset "Export"/"Data to Textfile" and then go from there."Data to Textfile" and then go from there.)
  • Oxalomalic acid  + ('''Oxalomalic acid''' is an inhibitor of a'''Oxalomalic acid''' is an inhibitor of aconitase (and of cytoplasmic NADP-dependent isocitrate dehydrogenase). Aconitase mediates the isomerization of citrate to isocitrate as the first step in the [[TCA_cycle| TCA cycle]]. Oxalomalic acid has been used at 1 mM concentration and after 45 min of pre-incubation to inhibit aconitase in permeabilized rat Soleus muscle fibres, inhibiting the enzyme by 24% ([[Osiki 2016 FASEB J]]).[[Osiki 2016 FASEB J]]).)
  • Oxidative stress  + ('''Oxidative stress''' results from an imb'''Oxidative stress''' results from an imbalance between pro-oxidants and antioxidants shifting the equilibrium in favor of the pro-oxidants. This process can be due by an increment in pro-oxidants, by a depletion of antioxidant systems or both. Oxidative stress generates oxidative damage of proteins, lipids and DNA.dative damage of proteins, lipids and DNA.)
  • Oxoglutarate dehydrogenase  + ('''Oxoglutarate dehydrogenase''' (α-ketogl'''Oxoglutarate dehydrogenase''' (α-ketoglutarate dehydrogenase) is a highly regulated enzyme of the [[tricarboxylic acid cycle]]. It catalyses the conversion of oxoglutarate (alpha-ketoglutarate) to succinyl-CoA, reduces NAD<sup>+</sup> to [[NADH]] and thus links to [[Complex I]] in the Electron transfer-pathway. OgDH is activated by low Ca<sup>2+</sup> (<20 µM) but inactivated by high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.y high Ca<sup>2+</sup> (>100 µM). OgDH is an important source of ROS.)
  • Oxygen flux  + ('''Oxygen flux''', ''J''<sub>O<su'''Oxygen flux''', ''J''<sub>O<sub>2</sub></sub>, is a [[specific quantity]]. Oxygen [[flux]] is [[oxygen flow]], ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup> per system] (an [[extensive quantity]]), divided by system size. Flux may be volume-specific (flow per volume [pmol·s<sup>-1</sup>·mL<sup>-1</sup>]), mass-specific (flow per mass [pmol·s<sup>-1</sup>·mg<sup>-1</sup>]), or marker-specific (flow per mtEU). Oxygen flux (''e.g.'', per body mass, or per cell volume) is distinguished from oxygen flow (per number of objects, such as cells), ''I''<sub>O<sub>2</sub></sub> [mol·s<sup>-1</sup>·x<sup>-1</sup>]. These are different forms of [[normalization of rate]].lization of rate]].)
  • Oxygen kinetics  + ('''Oxygen kinetics''' describes the depend'''Oxygen kinetics''' describes the dependence of respiration of isolated mitochondria or cells on oxygen partial pressure. Frequently, a strictly hyperbolic kinetics is observed, with two parameters, the oxygen pressure at half-maximum flux, ''p''<sub>50</sub>, and maximum flux, Jmax. The ''p''<sub>50</sub> is in the range of 0.2 to 0.8 kPa for cytochrome ''c'' oxidase, isolated mitochondria and small cells, strongly dependent on ''J''<sub>max</sub> and coupling state.lls, strongly dependent on ''J''<sub>max</sub> and coupling state.)
  • Oxygen pressure  + ('''Oxygen pressure''' or partial [[pressure]] of oxygen [kPa], related to oxygen concentration in solution by the [[oxygen solubility]], ''S''<sub>O2</sub> [µM/kPa].)
  • Ap5A  + ('''P1,P5-Di(adenosine-5')pentaphosphate (Ap5A)''' is an inhibitor of [[adenylate kinase]] (ADK), the enzyme which rephosphorylates AMP to ADP, consuming ATP (ATP + AMP ↔ 2 ADP).)
  • PGMSGp pathway control state  + ('''PGMSGp''': [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]]. '''MitoPathway control state:''' NSGp '''SUIT protocol:''' [[SUIT-038]] This substrate combination supports convergent electron flow to the [[Q-junction]].)
  • POS-Service Kit  + ('''POS-Service Kit''', in [[O2k-Accessory Box]] including all oxygen sensor service accessories for membrane mounting and service of the [[OroboPOS|POS]].)
  • PREreview  + ('''PREreview''' encourages scientists to p'''PREreview''' encourages scientists to post their scientific outputs as preprints. PREreview makes it easier to start and run a Preprint Journal Club, or integrate preprint review into conventional journal clubs. PREreview seeks to diversify peer review in the academic community by crowdsourcing pre-publication feedback to improve the quality of published scientific output, and to train early-career researchers (ECRs) in how to review others' scientific work. We want to facilitate a cultural shift in which every scientist posts, reads, and engages with preprints as standard practice in scholarly publishing. We see PREreview as a hub to support and nurture the growth of a community that openly exchanges timely, constructive feedback on emerging scientific outputs. We believe that by empowering ECRs through peer review training programs, thereby increasing the diversity of researchers involved in the peer review process, PREreview will help establish a healthier and more sustainable culture around research dissemination and evaluation. This project was born in April 2017 as a collaboration between Samantha Hindle and Daniela Saderi, scientists and [[ASAPbio]] Ambassadors, with help from Josh Nicholson, at the time working for [https://www.authorea.com/aboutus Authorea].ttps://www.authorea.com/aboutus Authorea].)
  • Packing\O2k-Box 1+2  + ('''Packing\O2k-Box 1+2''' for shipping the [[O2k-Core]]. O2k-WorldWide delivery, insurance and handling are included in the O2k-Core.)
  • PalM  + ('''PalM''': [[Palmitoylcarnitine]] & [[Malate]]. '''MitoPathway control state:''' [[ F | Fatty acid oxidation pathway control state]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctM  + ('''PalOctM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Malate]]. '''MitoPathway control state:''' [[ F | Fatty acid oxidation pathway control state]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPGM  + ('''PalOctPGM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPGMS  + ('''PalOctPGMS''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]]. '''MitoPathway control state:''' [[FNS]] '''SUIT protocols:''' [[SUIT-019]])
  • PalOctPM  + ('''PalOctPM''': [[Palmitoylcarnitine]] & [[Octanoylcarnitine]] & [[Pyruvate]] & [[Malate]]. '''MitoPathway control state:''' [[FN]] '''SUIT protocols:''' [[SUIT-019]])
  • PalPGMSGp pathway control state  + ('''PalPGMSGp''': [[Palmitoylcarnitine]]'''PalPGMSGp''': [[Palmitoylcarnitine]] & [[Pyruvate]] & [[Glutamate]] & [[Malate]] & [[Succinate]] & [[Glycerophosphate]].</br></br>'''MitoPathway control state:''' FNSGp</br></br>'''SUIT protocol:''' [[SUIT-026]]</br></br>This substrate combination supports convergent electron flow to the [[Q-junction]].[[Q-junction]].)
  • Palmitate  + ('''Palmitate''' is a term for the salts an'''Palmitate''' is a term for the salts and esters of palmitic acid (CH<sub>3</sub>(CH<sub>2</sub>)<sub>14</sub>COOH). Palmitic acid is the first fatty acid produced during fatty acid synthesis and the precursor to longer fatty acids. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC), which is responsible for converting acetyl-CoA to malonyl-CoA, which in turn is used to add to the growing acyl chain, thus preventing further palmitate generation. In order to dissolve the water-insoluble sodium palmitate, [[Bovine serum albumine| BSA]] is needed to form the water-soluble compound called palmitate:BSA.[[Bovine serum albumine| BSA]] is needed to form the water-soluble compound called palmitate:BSA.)
  • Palmitoyl-CoA  + ('''Palmitoyl-CoA''' is a coenzyme A deriva'''Palmitoyl-CoA''' is a coenzyme A derivative of palmitate formed by acyl-CoA synthase. In contrast to medium- and short-chain acyl-CoA, palmitoyl-CoA cannot freely diffuse into the mitochondrial matrix. Formation of palmitoylcarnitine by CPTI is necessary prior to transfer into mitochondria for further fatty acid oxidation (β-oxidation). To study [[Fatty acid oxidation]] using Palmitoyl-CoA, [[Carnitine]] and low amount of malate is needed on mitochondrial preparations.e is needed on mitochondrial preparations.)
  • Palmitoylcarnitine  + ('''Palmitoylcarnitine''' is an ester deriv'''Palmitoylcarnitine''' is an ester derivative of [[carnitine]] (long-chain acylcarnitine) involved in the metabolism of fatty acids. Within the cell, palmitoylcarnitine is transported into the mitochondria to deliver palmitate for fatty acid oxidation and energy production.atty acid oxidation and energy production.)
  • Pathway control efficiency  + ('''Pathway control efficiencies''' are [[flux control efficiency |flux control efficiencies]]'''Pathway control efficiencies''' are [[flux control efficiency |flux control efficiencies]], expressing the relative change of flux in response to a transition between two [[electron-transfer-pathway state]]s due to a change of (''1'') substrate availability or (''2'') inhibition of enzyme steps in the pathway, in a defined [[coupling-control state]].[[coupling-control state]].)
  • Peer review  + ('''Peer reviews''' provide a critical asse'''Peer reviews''' provide a critical assessment of a manuscript prior to publication. Bioenergetics Communications publishes [https://www.bioenergetics-communications.org/index.php/bec/BECPolicies#Permanency_of_content.2C_peer-review_process.2C_and_Journal.27s_options_for_post-publication_discussions_and_corrections Open Peer Reviews] for transparency of the review process.s] for transparency of the review process.)
  • PeerJ Preprints 'pre-print' area of PeerJ  + ('''PeerJ Preprints''' is the 'pre-print' a'''PeerJ Preprints''' is the 'pre-print' area of the Open Access journal ''PeerJ''. Similar to preprint servers that already exist (for example arXiv.org), authors can submit draft, incomplete, or final versions of articles they are working on. By using this service, authors establish precedent; they can solicit feedback; and they can work on revisions of their manuscript. Once they are ready, they can submit their preprint article into ''PeerJ'' (although it is not a requirement to do so).</br></br>''PeerJ Preprints'' was launched in April 2013. It only accepts submissions in the same subject areas as ''PeerJ'' (biological, medical and environmental sciences) and ''PeerJ Computer Science''. In order to submit to ''PeerJ Preprints'', at least the submitting author must have a user account with ''PeerJ''. There is no pre-publication peer-review of submissions; however we do perform basic checks to ensure conformity with our policies. Submissions are made using the same platform as with the peer-reviewed journals, although some of the requirements are less stringent. Articles are not typeset, but we do provide automated conversion into PDF. The default is for a ''PeerJ Preprints'' publication to be fully open to all viewers (what we call a 'public' pre-print).</br></br>'''PeerJ''' is an Open Access, peer-reviewed, scholarly journal. It considers and publishes research articles in the biological, medical and environmental sciences. It aims for rapid decision making and will publish articles as soon as they are ready. ''PeerJ'' is based in both San Diego, US, and London, UK.sed in both San Diego, US, and London, UK.)
  • Perfluorooctanoic acid  + ('''Perfluorooctanoic acid''' (PFOA) is a metabolically inert perfluorinated fatty acid which activates [[UCP1]] in brown-fat mitochondria. UCP1-dependent respiration can be stimulated with 600 μM PFOA after inhibition of the phosphorylation system.)
  • Performance Estimation  + ('''Performance estimation''')
  • PBMC  + ('''Peripheral blood mononuclear cells''' ('''Peripheral blood mononuclear cells''' (PBMC) are a fraction of the leucocyte population in the blood composed by cells with round nucleus. PBMC consist of lymphocytes (T, B and NK cells) and monocytes. During extraction, neutrophils and platelets (PLT) can be found in the PBMC fraction, where PLT are considered as a contamination.ere PLT are considered as a contamination.)
  • Permeabilized cells  + ('''Permeabilized cells''' (pce) are mitoch'''Permeabilized cells''' (pce) are mitochondrial preparations obtained by selectively permeabilizing the plasma membrane (e.g., with [[digitonin]]), for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.</br></br>'''Permeabilized cells''' (pce) are, therefore, not any longer viable or [[living cells]] (ce), since the intactness of cells implies the intactness of the plasma membrane. Any typical quantiative cell viability test (trypan blue etc) evaluating the intactness of the plasma membrane, yields a 100% negative result on fully permeabilized cells.</br></br>For permeabilizing the cell plasma membranes chemically with [[digitonin]], without damaging the [[mitochondrial|mt]]-membranes, the optimum concentration of digitonin must be previously determinated. The protocol [[SUIT-010]] is designed for the evaluation of optimum digitonin concentration for permeabilizing cells, a requirement to account for differences between cell types, the concentration of cells, and variability between batches of the natural product digitonin. batches of the natural product digitonin.)
  • Permeabilized muscle fibers  + ('''Permeabilized muscle fibers''' (pfi) ar'''Permeabilized muscle fibers''' (pfi) are used as a mitochondrial preparation in respirometry to access mitochondrial function comparable to [[isolated mitochondria]] (imt). pfi are obtained by selectively permeabilizing the plasma membrane mechanically and chemically ([[saponin]]), for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.</br></br>:» MitoPedia topic: [[Mitochondrial preparations]][Mitochondrial preparations]])
  • Permeabilized tissue or cells  + ('''Permeabilized tissue''' ([[Permeabilized tissue|pti]]'''Permeabilized tissue''' ([[Permeabilized tissue|pti]], see also [[permeabilized muscle fibers]], pfi) or cells ([[Permeabilized cells|pce]]) are mitochondrial preparations obtained by selectively permeabilizing the plasma membrane mechanically or [[permeabilization of plasma membrane|chemically]], for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.</br></br>'''Permeabilized cells''' (pce) are, therefore, not any longer viable or [[living cells]] (ce), since the intactness of cells implies the intactness of the plasma membrane. Any typical quantiative cell viability test (trypan blue etc) evaluating the intactness of the plasma membrane, yields a 100% negative result on fully permeabilized cells.ative result on fully permeabilized cells.)
  • Permeabilized tissue  + ('''Permeabilized tissue''' (pti, see also '''Permeabilized tissue''' (pti, see also [[permeabilized muscle fibers]], pfi) are mitochondrial preparations obtained by selectively permeabilizing the plasma membrane mechanically or chemically (e.g., with [[saponin]]), for the exchange of soluble molecules between the cytosolic phase and external medium, without damaging the [[mitochondrial|mt]]-membranes.[[mitochondrial|mt]]-membranes.)
  • Peroxisome proliferator-activated receptor gamma coactivator 1-alpha  + ('''Peroxisome proliferator-activated recep'''Peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1α''' (PGC-1α) is a protein which functions as an inducible transcriptional coactivator, a coregulator of transcription factors, particularly [[NRF-1]] and [[TFAM]]. PGC-1α was first described in 1998 ([[Puigserver 1998 Cell]]). PGC-1α drives the formation of slow-twich muscle fibres ([[Lin 2002 Nature]]) and is increased upon endurance training ([[Norrbom 2004 J Appl Physiol]]). PGC-1α expression is inhibited by the proinflammatory cytokine tumor necrosis factor α (TNF-α) and high levels of leptin. Upregulation of PGC-1α expression is induced by increased [[eNOS]] activity -> [[MiPNet15.05_NO-manual|NO]] -> [[guanylate cyclase]] -> [[cGMP]] ([[Nisoli 2007 Circ Res]]). AMP-activated protein kinase (AMPK) increases PGC-1α expression through SIRT1 ([[Canto 2009 Nature]]).9 Nature]]).)
  • Phenylsuccinate  + ('''Phenylsuccinate''' is a competitive inhibitor of succinate transport (20 mM).)
  • Phosphocreatine  + ('''Phosphocreatine''' is a high energy compound in the skeletal muscle of vertebrates and is present in 4 to 5 times the concentration of ATP.)
  • Phosphoenolpyruvate carboxykinase  + ('''Phosphoenolpyruvate carboxykinase''' (P'''Phosphoenolpyruvate carboxykinase''' (PEPCK) catalyzes the anabolic reaction of [[oxaloacetate]] (Oxa) to [[phosphoenolpyruvate]] at the expense of GTP. PEPCK is a cytoplasmatic enzyme involved in gluconeogenesis in mouse and rat liver, but 'is found in the mitochondria in the rabbit and chicken, and in both cytoplasm and mitochondria in the guinea pig' ([[Lehninger 1970 Worth Publishers |Lehninger 1970]]). In many anoxia-resistant animals, PEPCK plays an important catabolic role under severe hypoxia and anoxia at the PEPCK branchpoint ([[Hochachka 2002 Oxford Univ Press |Hochachka, Somero 2002)]], feeding malate into the reversed TCA cycle: malate is dismutated to pyruvate catalyzed by [[malic enzyme]] in the oxidative direction, and to fumarate in the reductive direction, leading to formation of succinate and ATP under anoxia ([[Gnaiger 1977 Invertebrate anoxibiosis |Gnaiger 1977]]).[[Gnaiger 1977 Invertebrate anoxibiosis |Gnaiger 1977]]).)
  • Phosphorescence  + ('''Phosphorescence''' is a similar phenome'''Phosphorescence''' is a similar phenomenon to [[fluorescence]]. However, instead of the electron returning to its original energy state following excitation, it decays to an intermediate state (with a different spin value) where it can remain for some time (minutes or even hours) before decaying to its original state. Phosphorescence is one form of [[Luminescence]], especially Photoluminescence.[[Luminescence]], especially Photoluminescence.)
  • PhotoBiology  + ('''PhotoBiology''' is the science of the e'''PhotoBiology''' is the science of the effect of light on biological processes. This includes [[photosynthesis]], photochemistry, photophysics, photomorphogenesis, vision, bioluminescence, circadian rhythms and photodynamic therapy. Phototoxicity results from non-ionizing radiation (i.e. ultraviolet, visible and infrared radiation). Non-ionizing radiation is any type of electromagnetic radiation that does not carry enough energy per quantum (photon energy below 10 eV) to completely remove an electron from an atom or molecule. When photons interact with molecules, the molecules can absorb the photon energy and become excited, reacting with surrounding molecules and stimulating "photochemical" and "photophysical" changes. Respiration may be affected by light during photosynthesis or in dark respiration, with the transient response of [[light-enhanced dark respiration]].[[light-enhanced dark respiration]].)
  • Photodecomposition  + ('''Photodecomposition''' or photodegradati'''Photodecomposition''' or photodegradation is the process of decay of organic material induced by increasing light intensity. Under aerobic conditions, the enhancement of photodecomposition by light intensity can be quantified by oxygen consumption in a controlled light regime. consumption in a controlled light regime.)
  • Photodiode arrays  + ('''Photodiode arrays''' are two dimensiona'''Photodiode arrays''' are two dimensional assemblies of [[photodiodes]]. They are frequently used in conjunction with charge coupled devices (CCDs) for digital imaging. They can be used in combination with [[dispersion devices]] to detect wavelength dependent light intensities in a [[spectrofluorometer]] or [[spectrophotometer]].[[spectrophotometer]].)
  • Photodiodes  + ('''Photodiodes''' are photodetectors that '''Photodiodes''' are photodetectors that convert [[incident light]] into a current or voltage dependent on their configuration. They have replaced photomultiplier tubes for most applications. For fluorometric measurements that do not require spectral data, a single photodiode with suitable [[filters]] can be used. Due to their larger detection area, they are more sensitive than [[photodiode arrays]].[[photodiode arrays]].)
  • Photorespiration  + ('''Photorespiration''' is the process by w'''Photorespiration''' is the process by which the enzyme RuBisCo oxygenates ribulose biphosphate (RuBP) instead of carboxylating it as part of the Calvin-Benson cycle, creating phosphoglycolate, a product that cannot be used within this cycle, thus dissipating the energy in [[photosynthesis]]. It is estimated that approximately 25 % of RuBisCo reactions are photorespiration, meaning a potential 25 % reduction in photosynthetic output due to the carbon fixed by photorespiration being released as carbon dioxide and nitrogen as ammonia, while the other product, 3-phosphoglycerate (G3P), requires a higher metabolic cost. This process involves a complex network of enzymes and metabolite exchanges between the chloroplasts, peroxisomes and mitochondria. It is also known as the oxidative photosynthetic carbon cycle or C<sub>2</sub> photosynthesis. Environmental conditions tend to affect it, such as temperature and partial pressure of oxygen and carbon dioxide. C<sub>4</sub> plants, CAM plants and algae have biochemical and biophysical mechanisms to overcome the photosynthetic losses due to photorespiration making them more photosynthetically efficient than C<sub>3</sub> plants. [https://www.biotechniques.com/molecular-biology/new-photorespiratory-pathways-the-key-to-humanitys-survival/ Recent plant biotechnology advances] focuse on increasing plant photosynthetic carbon fixation by reducing photorespiration loses.asing plant photosynthetic carbon fixation by reducing photorespiration loses.)
  • Photosynthesis  + ('''Photosynthesis''' is the process that c'''Photosynthesis''' is the process that converts light energy into chemical energy which is subsequently transformed to the physiological energy demand. Photosynthesis has a light-dependent and light-independent (dark) phase. In plants, algae, and cynobacteria, light energy is absorbed during the light phase by the pigment chlorophyll and used to split water and generate adenosine triphosphate (ATP) and reducing power - nicotinamide adenine dinucleotide phosphate (NADPH), with the net production of O<sub>2</sub> as a waste product. During the dark phase ATP and NADPH are used to synthesize carbohydrates from CO<sub>2</sub> through the metabolic pathway called Calvin-Benson cycle. Oxygenic photosynthesis is responsible for producing and maintaining the oxygen concentration of the Earth’s atmosphere. In bacteria such as cyanobacteria, photosynthesis involves the plasma membrane and the cytoplasm. In eukaryotic cells (plants and algae), photosynthesis takes place in the chloroplasts.plants and algae), photosynthesis takes place in the chloroplasts.)
  • Piericidin  + ('''Piericidin''' C<sub>25</sub>'''Piericidin''' C<sub>25</sub>H<sub>37</sub>NO<sub>4</sub> is an antibiotic (isolated from ''Streptomyces mobaraensis'') showing similarity with ubiquinone structure which has a potent and competitive inhibitory effect of [[Complex I |CI]] (it competes with endogenous and partially with exogenous Q for binding sites). CI inhibitors have been divided (''1'') depending of the site of action (functional classification): quinone antagonists (e.g. piericidin A, first site), semiquinone antagonists (piericidin A, second site; piericidin B; [[Rotenone| rotenone]] and quinol antagonists (myxothiazol; stigmatellin), and (''2'') depending on their effect on ROS production: inducing ROS production (e.g. rotenone, piericidin A, Rolliniastatin-1 and -2) and preventing ROS production (e.g. stigmatellin, capsaicin, mucidin and coenzyme Q2). In plants, pieridicin A inhibits photosystem II.in, mucidin and coenzyme Q2). In plants, pieridicin A inhibits photosystem II.)
  • Plan S  + ('''Plan S''' is an initiative for [[Open Access]]'''Plan S''' is an initiative for [[Open Access]] publishing that was launched in September 2018. The plan is supported by cOAlition S, an international consortium of research funding and performing organisations. Plan S requires that, from 2021, scientific publications that result from research funded by public grants must be published in compliant Open Access journals or platforms. According to [https://www.scienceeurope.org/our-priorities/open-access Science Europe], "Plan S requires that recipients of research funding from cOAlition S organisations make the resulting publications available immediately (without embargoes) and under open licences, either in quality Open Access platforms or journals or through immediate deposit in open repositories that fulfil the necessary conditions."ies that fulfil the necessary conditions.")
  • Platelet-rich plasma  + ('''Platelet-rich plasma''' (PRP) is obtain'''Platelet-rich plasma''' (PRP) is obtained as the upper layer at low-speed centrifugation (around 150-200 ''g''), when white and red blood cells sediment and thus get separated from plasma containing the [[platelet]]s. For further details see [[blood cell preparation]].[[blood cell preparation]].)
  • Platelet  + ('''Platelets''' or '''thrombocytes''' (PLT) are cell fragments derived from megakaryocytes with hemostatic function in the blood stream. PLT are anucleated but contain functioning mitochondria that play a critical role in PLT activation.)
  • Poicilotherms  + ('''Poicilotherms''' are [[ectotherms]] whose body temperatures conform to the temperature of the milieu in a thermally variable environment.)
  • Redox poise  + ('''Poise'''=A state of balance. '''Redox p'''Poise'''=A state of balance. '''Redox poise''' in electron transport occurs when each electron-carrying intermediate is present in both its oxidized state and its reduced state, in order for that component both to accept and to donate electrons or hydrogen atoms. Redox poise is likely to be essential in the Q-cycle, where the plastosemiquinone participates in one-electron transfer with cytochrome ''b'', despite its tendency to transfer its single electron to oxygen, generating superoxide. When applied to noncyclic electron transport, ''redox poise'' indicates a position of optimal redox state where the activity of components are such that their effective redox potentials favor physiologically useful electron transfer. physiologically useful electron transfer.)
  • Polarographic oxygen sensor  + ('''Polarographic oxygen sensors''' (POS) a'''Polarographic oxygen sensors''' (POS) are operated with a polarization voltage between the cathode and anode, connected by an electrolyte. Cathode, anode and electrolyte are separated from the analyte by an oxygen-permeable membrane. Oxygen is reduced at the cathode such that the local oxygen concentration is maintained at zero, and diffuses along the concentration gradient from the stirred medium to the cathode, resulting in a linear calibration between oxygen partial pressure and electric current [Amp] (amperometric mode of operation). The [[OroboPOS]] is the POS applied in the [[Oroboros O2k]].[[Oroboros O2k]].)
  • Polyether ether ketone  + ('''Polyether ether ketone (PEEK)''' is a s'''Polyether ether ketone (PEEK)''' is a semicrystalline organic polymer thermoplastic, which is chemically very resistant, with excellent mechanical properties. PEEK is compatible with ultra-high vacuum applications, and its resistance against oxygen diffusion make it an ideal material for high-resolution respirometry ([[POS]] insulation; coating of stirrer bars; stoppers for closing the O2k-Chamber).rs; stoppers for closing the O2k-Chamber).)